The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes

  1. Maria Benito-Jardón
  2. Sarah Klapproth
  3. Irene Gimeno-LLuch
  4. Tobias Petzold
  5. Mitasha Bharadwaj
  6. Daniel J Müller
  7. Gabriele Zuchtriegel
  8. Christoph A Reichel
  9. Mercedes Costell  Is a corresponding author
  1. Universitat de València, Spain
  2. Ludwig-Maximilians-Universität München, Germany
  3. Klinikum der Universtaet Muenchen, Germany
  4. Eidgenössische Technische Hochschule Zürich, Switzerland
  5. ETH Zürich, Switzerland

Abstract

Fibronectin (FN), a major extracellular matrix component, enables integrin-mediated cell adhesion via binding of α5β1, αIIbβ3 and αv-class integrins to an RGD-motif. An additional linkage for α5 and αIIb is the synergy site located in close proximity to the RGD motif. We report that mice with a dysfunctional FN-synergy motif (FNsyn/syn) suffer from surprisingly mild platelet adhesion and bleeding defects due to delayed thrombus formation after vessel injury. Additional loss of β3 integrins dramatically aggravates the bleedings and severely compromises smooth muscle cell coverage of the vasculature leading to embryonic lethality. Cell-based studies revealed that the synergy site is dispensable for the initial contact of α5β1 with the RGD, but essential to re-enforce the binding of α5β1/αIIbβ3 to FN. Our findings demonstrate a critical role for the FN synergy site when external forces exceed a certain threshold or when αvβ3 integrin levels decrease below a critical level.

Article and author information

Author details

  1. Maria Benito-Jardón

    Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9562-5430
  2. Sarah Klapproth

    Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Irene Gimeno-LLuch

    Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Tobias Petzold

    Medizinische Klinik und Poliklinik, Klinikum der Universtaet Muenchen, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Mitasha Bharadwaj

    Department Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel J Müller

    Department of Biosystems Science and Engineering, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Gabriele Zuchtriegel

    Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Christoph A Reichel

    Departement of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Mercedes Costell

    Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain
    For correspondence
    mercedes.costell@uv.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6146-996X

Funding

Ministerio de Economía y Competitividad (National grant)

  • Maria Benito-Jardón
  • Irene Gimeno-LLuch
  • Mercedes Costell

Conselleria Valenciana d'Educació i Ciència (Graduate student fellowship)

  • Maria Benito-Jardón

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were housed in special pathogen free animal facilities. All mouse work was performed in accordance with the Government of the Valencian Community (Spain) guidelines (permission reference A1327395471346). Mice containing the integrin β3 deletion were bred under the permission reference 55.2-1-54-2532-96-2015 (Government of Upper Bavaria). The tail-bleeding and cremaster muscle venules injury assays performed under the permission reference 55.2-1-54-2532-115-12 (Government of Upper Bavaria).

Copyright

© 2017, Benito-Jardón et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,711
    views
  • 662
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria Benito-Jardón
  2. Sarah Klapproth
  3. Irene Gimeno-LLuch
  4. Tobias Petzold
  5. Mitasha Bharadwaj
  6. Daniel J Müller
  7. Gabriele Zuchtriegel
  8. Christoph A Reichel
  9. Mercedes Costell
(2017)
The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes
eLife 6:e22264.
https://doi.org/10.7554/eLife.22264

Share this article

https://doi.org/10.7554/eLife.22264

Further reading

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.