Activity-dependent regulation of T-type calcium channels by submembrane calcium ions

  1. Magali Cazade
  2. Isabelle Bidaud
  3. Philippe Lory  Is a corresponding author
  4. Jean Chemin  Is a corresponding author
  1. IGF, CNRS, INSERM, Université de Montpellier, France

Abstract

Voltage-gated Ca2+ channels are involved in numerous physiological functions and various mechanisms finely tune their activity, including the Ca2+ ion itself. This is well exemplified by the Ca2+-dependent inactivation of L-type Ca2+ channels, whose alteration contributes to the dramatic disease Timothy Syndrome. For T-type Ca2+ channels, a long-held view is that they are not regulated by intracellular Ca2+. Here we challenge this notion by using dedicated electrophysiological protocols on both native and expressed T-type Ca2+ channels. We demonstrate that a rise in submembrane Ca2+ induces a large decrease in T-type current amplitude due to an important hyperpolarizing shift in the steady-state inactivation. Activation of most representative Ca2+-permeable ionotropic receptors similarly regulate T-type current properties. Altogether, our data clearly establish that Ca2+ entry exerts a feedback control on T-type channel activity, by modulating the channel availability, a mechanism that critically links cellular properties of T-type Ca2+ channels to their physiological roles.

Article and author information

Author details

  1. Magali Cazade

    IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Isabelle Bidaud

    IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Philippe Lory

    IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
    For correspondence
    philippe.lory@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean Chemin

    IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
    For correspondence
    jean.chemin@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6089-5964

Funding

Agence Nationale de la Recherche (ANR-10-BLAN-1601)

  • Philippe Lory

Laboratory of excellence in Ion Channel Science and Therapeutics (LabEx ICST)

  • Philippe Lory

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Baron Chanda, University of Wisconsin-Madison, United States

Ethics

Animal experimentation: All animal use procedures were done in accordance with the directives of the French Ministry of Agriculture (A 34-172-41).

Version history

  1. Received: October 13, 2016
  2. Accepted: January 20, 2017
  3. Accepted Manuscript published: January 21, 2017 (version 1)
  4. Version of Record published: February 14, 2017 (version 2)

Copyright

© 2017, Cazade et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,895
    views
  • 492
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Magali Cazade
  2. Isabelle Bidaud
  3. Philippe Lory
  4. Jean Chemin
(2017)
Activity-dependent regulation of T-type calcium channels by submembrane calcium ions
eLife 6:e22331.
https://doi.org/10.7554/eLife.22331

Share this article

https://doi.org/10.7554/eLife.22331

Further reading

    1. Neuroscience
    Ivan Tomić, Paul M Bays
    Research Article

    Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.

    1. Neuroscience
    Emilio Salinas, Bashirul I Sheikh
    Insight

    Our ability to recall details from a remembered image depends on a single mechanism that is engaged from the very moment the image disappears from view.