STELLA modulates transcriptional and endogenous retrovirus programs during maternal-to-zygotic transition

  1. Yun Huang
  2. Jong Kyoung Kim
  3. Dang Vinh Do
  4. Caroline Lee
  5. Christopher A Penfold
  6. Jan J Zylicz
  7. John C Marioni  Is a corresponding author
  8. Jamie A Hackett  Is a corresponding author
  9. M Azim Surani  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Daegu Gyeongbuk Institute of Science and Technology, Republic of Korea
  3. European Molecular Biology Laboratory - European Bioinformatics Institute, United Kingdom
  4. European Molecular Biology Laboratory, Italy

Abstract

The maternal-to-zygotic transition (MZT) marks the period when the embryonic genome is activated and acquires control of development. Maternally inherited factors play a key role in this critical developmental process, which occurs at the 2-cell stage in mice. We investigated the function of the maternally inherited factor STELLA (DPPA3) using single-cell/embryo approaches. We show that loss of maternal STELLA results in widespread transcriptional mis-regulation and a partial failure of MZT. Strikingly, activation of endogenous retroviruses (ERVs) is significantly impaired in Stella maternal/zygotic knockout embryos, which in turn leads to a failure to upregulate chimeric transcripts. Amongst ERVs, MuERV-L activation is particularly affected by the absence of STELLA, and direct in vivo knockdown of MuERV-L impacts the developmental potential of the embryo. We propose that STELLA is involved in ensuring activation of ERVs, which themselves play a potentially key role during early development, either directly or through influencing embryonic gene expression.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yun Huang

    Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Jong Kyoung Kim

    Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Dang Vinh Do

    Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Caroline Lee

    Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Christopher A Penfold

    Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jan J Zylicz

    Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9622-5658
  7. John C Marioni

    European Molecular Biology Laboratory - European Bioinformatics Institute, Cambridge, United Kingdom
    For correspondence
    marioni@ebi.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  8. Jamie A Hackett

    European Molecular Biology Laboratory, Rome, Italy
    For correspondence
    jamie.hackett@embl.it
    Competing interests
    The authors declare that no competing interests exist.
  9. M Azim Surani

    Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    a.surani@gurdon.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8640-4318

Funding

Wellcome (96738)

  • Yun Huang
  • Dang Vinh Do
  • Caroline Lee
  • Christopher A Penfold
  • Jan J Zylicz
  • Jamie A Hackett
  • M Azim Surani

Wellcome (92096)

  • Yun Huang
  • Dang Vinh Do
  • Caroline Lee
  • Christopher A Penfold
  • Jan J Zylicz
  • Jamie A Hackett
  • M Azim Surani

Cancer Research UK (C6946/A14492)

  • Yun Huang
  • Dang Vinh Do
  • Caroline Lee
  • Christopher A Penfold
  • Jan J Zylicz
  • Jamie A Hackett
  • M Azim Surani

European Molecular Biology Laboratory

  • Jong Kyoung Kim
  • John C Marioni

Cancer Research UK

  • Jong Kyoung Kim
  • John C Marioni

James Baird Fund, University of Cambridge

  • Yun Huang

DGIST Start-up Fund of the Ministry of Science, ICT and Future Planning (2017010073)

  • Jong Kyoung Kim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Robb Krumlauf, Stowers Institute for Medical Research, United States

Ethics

Animal experimentation: All husbandry and experiments involving mice were authorized by a UK Home Office Project License 80/2637 and carried out in a Home Office-designated facility.

Version history

  1. Received: October 18, 2016
  2. Accepted: March 9, 2017
  3. Accepted Manuscript published: March 21, 2017 (version 1)
  4. Version of Record published: April 25, 2017 (version 2)

Copyright

© 2017, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,645
    views
  • 1,107
    downloads
  • 89
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yun Huang
  2. Jong Kyoung Kim
  3. Dang Vinh Do
  4. Caroline Lee
  5. Christopher A Penfold
  6. Jan J Zylicz
  7. John C Marioni
  8. Jamie A Hackett
  9. M Azim Surani
(2017)
STELLA modulates transcriptional and endogenous retrovirus programs during maternal-to-zygotic transition
eLife 6:e22345.
https://doi.org/10.7554/eLife.22345

Share this article

https://doi.org/10.7554/eLife.22345

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.