1. Neuroscience
Download icon

Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion

  1. Adriane G Otopalik  Is a corresponding author
  2. Marie L Goeritz
  3. Alexander C Sutton
  4. Ted Brookings
  5. Cosmo Joseph Guerini
  6. Eve Marder
  1. Brandeis University, United States
  2. University of Auckland, New Zealand
  3. Q-State Biosciences, United States
Research Article
  • Cited 15
  • Views 1,752
  • Annotations
Cite this article as: eLife 2017;6:e22352 doi: 10.7554/eLife.22352

Abstract

Neuronal physiology depends on a neuron's ion channel composition and unique morphology. Variable ion channel compositions can produce similar neuronal physiologies across animals. Less is known regarding the morphological precision required to produce reliable neuronal physiology. Theoretical studies suggest that morphology is tightly tuned to minimize wiring and conduction delay of synaptic events. We utilize high-resolution confocal microscopy and custom computational tools to characterize the morphologies of four neuron types in the stomatogastric ganglion (STG) of the crab Cancer borealis. Macroscopic branching patterns and fine cable properties are variable within and across neuron types. We compare these neuronal structures to synthetic minimal spanning neurite trees constrained by a wiring cost equation and find that STG neurons do not adhere to prevailing hypotheses regarding wiring optimization principles. In this highly-modulated and oscillating circuit, neuronal structures appear to be governed by a space-filling mechanism that outweighs the cost of inefficient wiring.

Article and author information

Author details

  1. Adriane G Otopalik

    Volen Center, Brandeis University, Waltham, United States
    For correspondence
    aotopali@brandeis.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3224-6502
  2. Marie L Goeritz

    Department of Marine Science, University of Auckland, Auckland, New Zealand
    Competing interests
    No competing interests declared.
  3. Alexander C Sutton

    Volen Center, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  4. Ted Brookings

    Q-State Biosciences, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Cosmo Joseph Guerini

    Biology Department, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  6. Eve Marder

    Volen Center, Brandeis University, Waltham, United States
    Competing interests
    Eve Marder, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9632-5448

Funding

National Institute of Neurological Disorders and Stroke (R37NS17813)

  • Eve Marder

National Institute of Neurological Disorders and Stroke (F31NS092126)

  • Adriane G Otopalik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Publication history

  1. Received: October 14, 2016
  2. Accepted: January 27, 2017
  3. Accepted Manuscript published: February 8, 2017 (version 1)
  4. Version of Record published: February 23, 2017 (version 2)

Copyright

© 2017, Otopalik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,752
    Page views
  • 391
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Neuroscience
    Feng Zhou et al.
    Research Article Updated

    Pain empathy can be evoked by multiple cues, particularly observation of acute pain inflictions or facial expressions of pain. Previous studies suggest that these cues commonly activate the insula and anterior cingulate, yet vicarious pain encompasses pain-specific responses as well as unspecific processes (e.g. arousal) and overlapping activations are not sufficient to determine process-specific shared neural representations. We employed multivariate pattern analyses to fMRI data acquired during observation of noxious stimulation of body limbs (NS) and painful facial expressions (FE) and found spatially and functionally similar cross-modality (NS versus FE) whole-brain vicarious pain-predictive patterns. Further analyses consistently identified shared neural representations in the bilateral mid-insula. The vicarious pain patterns were not sensitive to respond to non-painful high-arousal negative stimuli but predicted self-experienced thermal pain. Finally, a domain-general vicarious pain pattern predictive of self-experienced pain but not arousal was developed. Our findings demonstrate shared pain-associated neural representations of vicarious pain.

    1. Neuroscience
    Yulan Li et al.
    Research Article Updated

    Astrocytes respond to and regulate neuronal activity, yet their role in mammalian behavior remains incompletely understood. Especially unclear is whether, and if so how, astrocyte activity regulates contextual fear memory, the dysregulation of which leads to pathological fear-related disorders. We generated GFAP-ChR2-EYFP rats to allow the specific activation of astrocytes in vivo by optogenetics. We found that after memory acquisition within a temporal window, astrocyte activation disrupted memory consolidation and persistently decreased contextual but not cued fear memory accompanied by reduced fear-related anxiety behavior. In vivo microdialysis experiments showed astrocyte photoactivation increased extracellular ATP and adenosine concentrations. Intracerebral blockade of adenosine A1 receptors (A1Rs) reversed the attenuation of fear memory. Furthermore, intracerebral or intraperitoneal injection of A1R agonist mimicked the effects of astrocyte activation. Therefore, our findings provide a deeper understanding of the astrocyte-mediated regulation of fear memory and suggest a new and important therapeutic strategy against pathological fear-related disorders.