Codon optimization underpins generalist parasitism in fungi
Abstract
The range of hosts that parasites can infect is a key determinant of the emergence and spread of disease. Yet the impact of host range variation on the evolution of parasite genomes remains unknown. Here, we show that codon optimization underlies genome adaptation in broad host range parasite. We found that the longer proteins encoded by broad host range fungi likely increase natural selection on codon optimization in these species. Accordingly, codon optimization correlates with host range across the fungal kingdom. At the species level, biased patterns of synonymous substitutions underpin increased codon optimization in a generalist but not a specialist fungal pathogen. Virulence genes were consistently enriched in highly codon-optimized genes of generalist but not specialist species. We conclude that codon optimization is related to the capacity of parasites to colonize multiple hosts. Our results link genome evolution and translational regulation to the long term persistence of generalist parasitism.
Data availability
-
Sclerotinia sclerotiorum isolates genome sequencePublicly available at the NCBI BioProject (accession no: PRJNA342788).
-
Rozella allomycis genome sequencePublicly available at genome.jgi.doe.gov.
-
Rhizopus oryzae genome sequencePublicly available at genome.jgi.doe.gov.
-
Nosema ceranae genome sequencePublicly available at the EBI European Nucleotide Archive (accession no: GCA_000988165.1).
-
Encephalitozoon intestinalis genome sequencePublicly available at genome.jgi.doe.gov.
-
Batrachochytrium dendrobatidis genome sequencePublicly available at www.broadinstitute.org.
-
Gonapodya prolifera genome sequencePublicly available at genome.jgi.doe.gov.
-
Sporisorium reilianum genome sequencePublicly available at genome.jgi.doe.gov.
-
Rhodotorula toruloides genome sequencePublicly available at genome.jgi.doe.gov.
-
Melampsora larici-populina genome sequencePublicly available at genome.jgi.doe.gov.
-
Puccinia triticina genome sequencePublicly available at www.broadinstitute.org.
-
Puccinia graminis genome sequencePublicly available at genome.jgi.doe.gov.
-
Cryptococcus neoformans genome sequencePublicly available at genome.jgi.doe.gov.
-
Wolfiporia cocos genome sequencePublicly available at genome.jgi.doe.gov.
-
Rhizoctonia solani genome sequencePublicly available at the EBI European Nucleotide Archive (accession no:GCA_000524645.1).
-
Serpula lacrymans genome sequencePublicly available at genome.jgi-psf.org.
-
Moniliophthora roreri genome sequencePublicly available at www.ncbi.nlm.nih.gov.elis.tmu.edu.tw.
-
Laccaria bicolor genome sequencePublicly available at genome.jgi.doe.gov.
-
Agaricus bisporus genome sequencePublicly available at genome.jgi.doe.gov.
-
Taphrina deformans genome sequencePublicly available at genome.jgi.doe.gov.
-
Tuber melanosporum genome sequencePublicly available at genome.jgi.doe.gov.
-
Penicillium digitatum genome sequencePublicly available at genome.jgi.doe.gov.
-
Aspergillus fumigatus genome sequencePublicly available at genome.jgi.doe.gov.
-
Stagonospora nodorum genome sequencePublicly available at genome.jgi.doe.gov.
-
Alternaria brassicicola genome sequencePublicly available at genome.jgi.doe.gov.
-
Pyrenophora tritici-repentis genome sequencePublicly available at genome.jgi.doe.gov.
-
Dothistroma septosporum genome sequencePublicly available at genome.jgi.doe.gov.
-
Pseudocercospora fijiensis genome sequencePublicly available at ftp.ncbi.nlm.nih.gov.
-
Zymoseptoria tritici genome sequencePublicly available at genome.jgi.doe.gov.
-
Passalora fulva genome sequencePublicly available at genome.jgi.doe.gov.
-
Blumeria graminis genome sequencePublicly available at genome.jgi.doe.gov.
-
Erysiphe necator genome sequencePublicly available at www.ncbi.nlm.nih.gov.
-
Botrytis cinerea genome sequencePublicly available at fungi.ensembl.org.
-
Oidiodendron maius genome sequencePublicly available at genome.jgi.doe.gov.
-
Pseudogymnoascus destructans genome sequencelicly available at www.broadinstitute.org.
-
Magnaporthe oryzae genome sequencePublicly available at genome.jgi.doe.gov.
-
Myceliophthora thermophila genome sequencePublicly available at genome.jgi.doe.gov.
-
Chaetomium globosum genome sequencePublicly available at genome.jgi.doe.gov.
-
Verticilium dahliae genome sequencePublicly available at www.ncbi.nlm.nih.gov.
-
Colletotrichum higginsianum genome sequencePublicly available at genome.jgi.doe.gov.
-
Colletotrichum graminicola genome sequencePublicly available at www.broadinstitute.org.
-
Ophiocordyceps unilateralis genome sequencePublicly available at www.ncbi.nlm.nih.gov.
-
Beauveria bassiana genome sequencePublicly available at genome.jgi.doe.gov.
-
Fusarium graminearum genome sequencePublicly available at genome.jgi.doe.gov.
-
Metarhizium acridum genome sequencePublicly available at genome.jgi.doe.gov.
-
Zymoseptoria tritici variant call filePublicly available at fungi.ensembl.org.
-
Gene expression data for Botrytis cinereaPublicly available at urgi.versailles.inra.fr.
-
List of hosts for fungal plant pathogensPublicly available at nt.ars-grin.gov.
Article and author information
Author details
Funding
European Research Council (ERC-StG 336808)
- Thomas Badet
- Remi Peyraud
- Malick Mbengue
- Olivier Navaud
- Sylvain Raffaele
Labex TULIP (ANR-10-LABX-41; ANR-11-IDEX-0002-02)
- Thomas Badet
- Remi Peyraud
- Malick Mbengue
- Olivier Navaud
- Adelin Barbacci
- Sylvain Raffaele
Australian grains research and development corporation
- Mark Derbyshire
- Richard P Oliver
Curtin University of Technology
- Mark Derbyshire
- Richard P Oliver
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Badet et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,405
- views
-
- 681
- downloads
-
- 38
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Genetics and Genomics
Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.
-
- Biochemistry and Chemical Biology
- Genetics and Genomics
Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.