Codon optimization underpins generalist parasitism in fungi

  1. Thomas Badet
  2. Remi Peyraud
  3. Malick Mbengue
  4. Olivier Navaud
  5. Mark Derbyshire
  6. Richard P Oliver
  7. Adelin Barbacci
  8. Sylvain Raffaele  Is a corresponding author
  1. Université de Toulouse, INRA, CNRS, France
  2. Curtin University, Australia

Abstract

The range of hosts that parasites can infect is a key determinant of the emergence and spread of disease. Yet the impact of host range variation on the evolution of parasite genomes remains unknown. Here, we show that codon optimization underlies genome adaptation in broad host range parasite. We found that the longer proteins encoded by broad host range fungi likely increase natural selection on codon optimization in these species. Accordingly, codon optimization correlates with host range across the fungal kingdom. At the species level, biased patterns of synonymous substitutions underpin increased codon optimization in a generalist but not a specialist fungal pathogen. Virulence genes were consistently enriched in highly codon-optimized genes of generalist but not specialist species. We conclude that codon optimization is related to the capacity of parasites to colonize multiple hosts. Our results link genome evolution and translational regulation to the long term persistence of generalist parasitism.

Data availability

The following data sets were generated
    1. Mbengue M
    2. Navaud O
    3. Raffaele S
    (2016) Sclerotinia sclerotiorum isolates genome sequence
    Publicly available at the NCBI BioProject (accession no: PRJNA342788).
The following previously published data sets were used

Article and author information

Author details

  1. Thomas Badet

    Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Remi Peyraud

    Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Malick Mbengue

    Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Olivier Navaud

    Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Mark Derbyshire

    Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Richard P Oliver

    Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Adelin Barbacci

    Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3156-272X
  8. Sylvain Raffaele

    Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
    For correspondence
    sylvain.raffaele@toulouse.inra.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2442-9632

Funding

European Research Council (ERC-StG 336808)

  • Thomas Badet
  • Remi Peyraud
  • Malick Mbengue
  • Olivier Navaud
  • Sylvain Raffaele

Labex TULIP (ANR-10-LABX-41; ANR-11-IDEX-0002-02)

  • Thomas Badet
  • Remi Peyraud
  • Malick Mbengue
  • Olivier Navaud
  • Adelin Barbacci
  • Sylvain Raffaele

Australian grains research and development corporation

  • Mark Derbyshire
  • Richard P Oliver

Curtin University of Technology

  • Mark Derbyshire
  • Richard P Oliver

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Badet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,405
    views
  • 681
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas Badet
  2. Remi Peyraud
  3. Malick Mbengue
  4. Olivier Navaud
  5. Mark Derbyshire
  6. Richard P Oliver
  7. Adelin Barbacci
  8. Sylvain Raffaele
(2017)
Codon optimization underpins generalist parasitism in fungi
eLife 6:e22472.
https://doi.org/10.7554/eLife.22472

Share this article

https://doi.org/10.7554/eLife.22472

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Federico A Vignale, Andrea Hernandez Garcia ... Adrian G Turjanski
    Research Article

    Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.