A high-resolution map of transcriptional repression

  1. Ziwei Liang
  2. Karen Brown
  3. Thomas Carroll
  4. Benjamin Taylor
  5. Isabel Ferreirós Vidal
  6. Brian Hendrich
  7. David Rueda
  8. Amanda G Fisher
  9. Matthias Merkenschlager  Is a corresponding author
  1. MRC London Institute of Medical Sciences, United Kingdom
  2. Wellcome Trust - Medical Research Council Stem Cell Institute, United Kingdom

Abstract

Turning genes on and off is essential for development and homeostasis, yet little is known about the sequence and causal role of chromatin state changes during the repression of active genes. This is surprising, as defective gene silencing underlies developmental abnormalities and disease. Here we delineate the sequence and functional contribution of transcriptional repression mechanisms at high temporal resolution. Inducible entry of the NuRD-interacting transcriptional regulator Ikaros into mouse pre-B cell nuclei triggered immediate binding to target gene promoters. Rapid RNAP2 eviction, transcriptional shutdown, nucleosome invasion, and reduced transcriptional activator binding required chromatin remodeling by NuRD-associated Mi2beta/CHD4, but were independent of HDAC activity. Histone deacetylation occurred after transcriptional repression. Nevertheless, HDAC activity contributed to stable gene silencing. Hence, high resolution mapping of transcriptional repression reveals complex and interdependent mechanisms that underpin rapid transitions between transcriptional states, and elucidates the temporal order, functional role and mechanistic separation of NuRD-associated enzymatic activities.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ziwei Liang

    Lymphocyte Development Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Karen Brown

    Lymphocyte Development Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Carroll

    Epigenetics Section, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Benjamin Taylor

    Lymphocyte Development Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6101-3786
  5. Isabel Ferreirós Vidal

    Lymphocyte Development Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Brian Hendrich

    Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0231-3073
  7. David Rueda

    Single Molecule Imaging Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Amanda G Fisher

    Lymphocyte Development Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthias Merkenschlager

    Lymphocyte Development Group, MRC London Institute of Medical Sciences, London, United Kingdom
    For correspondence
    matthias.merkenschlager@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2889-3288

Funding

Medical Research Council (MC-A652-5PY20)

  • David Rueda
  • Amanda G Fisher
  • Matthias Merkenschlager

Wellcome (099276/Z/12/Z)

  • Matthias Merkenschlager

UK-China Scholarships for Excellence

  • Ziwei Liang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Liang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,488
    views
  • 927
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ziwei Liang
  2. Karen Brown
  3. Thomas Carroll
  4. Benjamin Taylor
  5. Isabel Ferreirós Vidal
  6. Brian Hendrich
  7. David Rueda
  8. Amanda G Fisher
  9. Matthias Merkenschlager
(2017)
A high-resolution map of transcriptional repression
eLife 6:e22767.
https://doi.org/10.7554/eLife.22767

Share this article

https://doi.org/10.7554/eLife.22767

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Timothy Fuqua, Yiqiao Sun, Andreas Wagner
    Research Article

    Gene regulation is essential for life and controlled by regulatory DNA. Mutations can modify the activity of regulatory DNA, and also create new regulatory DNA, a process called regulatory emergence. Non-regulatory and regulatory DNA contain motifs to which transcription factors may bind. In prokaryotes, gene expression requires a stretch of DNA called a promoter, which contains two motifs called –10 and –35 boxes. However, these motifs may occur in both promoters and non-promoter DNA in multiple copies. They have been implicated in some studies to improve promoter activity, and in others to repress it. Here, we ask whether the presence of such motifs in different genetic sequences influences promoter evolution and emergence. To understand whether and how promoter motifs influence promoter emergence and evolution, we start from 50 ‘promoter islands’, DNA sequences enriched with –10 and –35 boxes. We mutagenize these starting ‘parent’ sequences, and measure gene expression driven by 240,000 of the resulting mutants. We find that the probability that mutations create an active promoter varies more than 200-fold, and is not correlated with the number of promoter motifs. For parent sequences without promoter activity, mutations created over 1500 new –10 and –35 boxes at unique positions in the library, but only ~0.3% of these resulted in de-novo promoter activity. Only ~13% of all –10 and –35 boxes contribute to de-novo promoter activity. For parent sequences with promoter activity, mutations created new –10 and –35 boxes in 11 specific positions that partially overlap with preexisting ones to modulate expression. We also find that –10 and –35 boxes do not repress promoter activity. Overall, our work demonstrates how promoter motifs influence promoter emergence and evolution. It has implications for predicting and understanding regulatory evolution, de novo genes, and phenotypic evolution.