A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice

  1. Kylie S Chew
  2. Jordan M Renna
  3. David S McNeill
  4. Diego Carlos Fernandez
  5. William Thomas Keenan
  6. Michael B Thomsen
  7. Jennifer L Ecker
  8. Gideon S Loevinsohn
  9. Cassandra VanDunk
  10. Daniel C Vicarel
  11. Adele Tufford
  12. Shijun Weng
  13. Paul A Gray
  14. Michel Cayouette
  15. Erik D Herzog
  16. Haiqing Zhao
  17. David M Berson  Is a corresponding author
  18. Samer Hattar  Is a corresponding author
  1. Johns Hopkins University, United States
  2. University of Akron, United States
  3. National Institute of Mental Health, National Institute of Health, United States
  4. Brown University, United States
  5. Washington University, United States
  6. Insistut de Recherches Cliniques de Montréal, Canada
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/22861/elife-22861-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kylie S Chew
  2. Jordan M Renna
  3. David S McNeill
  4. Diego Carlos Fernandez
  5. William Thomas Keenan
  6. Michael B Thomsen
  7. Jennifer L Ecker
  8. Gideon S Loevinsohn
  9. Cassandra VanDunk
  10. Daniel C Vicarel
  11. Adele Tufford
  12. Shijun Weng
  13. Paul A Gray
  14. Michel Cayouette
  15. Erik D Herzog
  16. Haiqing Zhao
  17. David M Berson
  18. Samer Hattar
(2017)
A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice
eLife 6:e22861.
https://doi.org/10.7554/eLife.22861