Semi-intact ex vivo approach to investigate spinal somatosensory circuits

Abstract

The somatosensory input that gives rise to the perceptions of pain, itch, cold and heat are initially integrated in the superficial dorsal horn of the spinal cord. Here, we describe a new approach to investigate these neural circuits in mouse. This semi-intact somatosensory preparation enables recording from spinal output neurons, while precisely controlling somatosensory input, and simultaneously manipulating specific populations of spinal interneurons. Our findings suggest that spinal interneurons show distinct temporal and spatial tuning properties. We also show that modality selectivity - mechanical, heat and cold - can be assessed in both retrogradely labeled spinoparabrachial projection neurons and genetically labeled spinal interneurons. Finally, we demonstrate that interneuron connectivity can be determined via optogenetic activation of specific interneuron subtypes. This new approach may facilitate key conceptual advances in our understanding of the spinal somatosensory circuits in health and disease.

Article and author information

Author details

  1. Junichi Hachisuka

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kyle M Baumbauer

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0437-9209
  3. Yu Omori

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lindsey M Snyder

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. H Richard Koerber

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    rkoerber@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah E Ross

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    saross@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2593-3133

Funding

National Institutes of Health (AR063772)

  • Sarah E Ross

National Institutes of Health (AR064445)

  • Sarah E Ross

National Institutes of Health (F31NS092146)

  • Lindsey M Snyder

National Institutes of Health (NS735483)

  • Lindsey M Snyder

National Institutes of Health (NS073548)

  • Kyle M Baumbauer

Rita Allen Foundation

  • Sarah E Ross

National Institutes of Health (NS02372925)

  • H Richard Koerber

National Institutes of Health (NS096705)

  • H Richard Koerber
  • Sarah E Ross

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol 14043431 of the University of Pittsburgh. All surgery was performed under anesthesia, and every effort was made to minimize suffering.

Copyright

© 2016, Hachisuka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,505
    views
  • 732
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Junichi Hachisuka
  2. Kyle M Baumbauer
  3. Yu Omori
  4. Lindsey M Snyder
  5. H Richard Koerber
  6. Sarah E Ross
(2016)
Semi-intact ex vivo approach to investigate spinal somatosensory circuits
eLife 5:e22866.
https://doi.org/10.7554/eLife.22866

Share this article

https://doi.org/10.7554/eLife.22866

Further reading

    1. Neuroscience
    Phillip P Witkowski, Lindsay JH Rondot ... Erie Boorman
    Research Article

    Adaptive behavior in complex environments critically relies on the ability to appropriately link specific choices or actions to their outcomes. However, the neural mechanisms that support the ability to credit only those past choices believed to have caused the observed outcomes remain unclear. Here, we leverage multivariate pattern analyses of functional magnetic resonance imaging (fMRI) data and an adaptive learning task to shed light on the underlying neural mechanisms of such specific credit assignment. We find that the lateral orbitofrontal cortex (lOFC) and hippocampus (HC) code for the causal choice identity when credit needs to be assigned for choices that are separated from outcomes by a long delay, even when this delayed transition is punctuated by interim decisions. Further, we show when interim decisions must be made, learning is additionally supported by lateral frontopolar cortex (lFPC). Our results indicate that lFPC holds previous causal choices in a ‘pending’ state until a relevant outcome is observed, and the fidelity of these representations predicts the fidelity of subsequent causal choice representations in lOFC and HC during credit assignment. Together, these results highlight the importance of the timely reinstatement of specific causes in lOFC and HC in learning choice-outcome relationships when delays and choices intervene, a critical component of real-world learning and decision making.

    1. Neuroscience
    Lauren J Kreeger, Suraj Honnuraiah ... Lisa Goodrich
    Research Article

    Animals navigate the auditory world by recognizing complex sounds, from the rustle of a predator to the call of a potential mate. This ability depends in part on the octopus cells of the auditory brainstem, which respond to multiple frequencies that change over time, as occurs in natural stimuli. Unlike the average neuron, which integrates inputs over time on the order of tens of milliseconds, octopus cells must detect momentary coincidence of excitatory inputs from the cochlea during an ongoing sound on both the millisecond and submillisecond time scale. Here, we show that octopus cells receive inhibitory inputs on their dendrites that enhance opportunities for coincidence detection in the cell body, thereby allowing for responses both to rapid onsets at the beginning of a sound and to frequency modulations during the sound. This mechanism is crucial for the fundamental process of integrating the synchronized frequencies of natural auditory signals over time.