1. Microbiology and Infectious Disease
Download icon

Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli

Research Article
  • Cited 33
  • Views 6,149
  • Annotations
Cite this article as: eLife 2017;6:e22939 doi: 10.7554/eLife.22939

Abstract

While specific mutations allow organisms to adapt to stressful environments, most changes in an organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in cellular mutation rates as a response to changes in selective pressure. We show that hypermutation independently evolves when different Escherichia coli cultures adapt to high ethanol stress. Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation rate. Specifically, population mutation rates rise when cells experience higher stress and decline again once cells are adapted. Interestingly, we identified cellular mortality as the major force driving the quick evolution of mutation rates. Together, these findings show how organisms balance robustness and evolvability and help explain the prevalence of hypermutation in various settings, ranging from emergence of antibiotic resistance in microbes to cancer relapses upon chemotherapy.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Toon Swings

    Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1225-3377
  2. Bram Van den Bergh

    Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Sander Wuyts

    Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Eline Oeyen

    Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Karin Voordeckers

    Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin J Verstrepen

    Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  7. Maarten Fauvart

    Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Natalie Verstraeten

    Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Jan Michiels

    Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
    For correspondence
    jan.michiels@kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5829-0897

Funding

Agentschap voor Innovatie door Wetenschap en Technologie (Strategic Basic Research Fellowship,121525)

  • Toon Swings

Fonds Wetenschappelijk Onderzoek (Postdoctoral Fellowship,1249117N)

  • Karin Voordeckers

Onderzoeksraad, KU Leuven (IDO/09/010)

  • Kevin J Verstrepen
  • Jan Michiels

Onderzoeksraad, KU Leuven (IDO/13/008)

  • Jan Michiels

Onderzoeksraad, KU Leuven (CREA/13/019)

  • Maarten Fauvart

Onderzoeksraad, KU Leuven (DBOF/12/035; DBOF/14/049)

  • Kevin J Verstrepen
  • Jan Michiels

Fonds Wetenschappelijk Onderzoek (KAN2014 1.5.222.14)

  • Maarten Fauvart

Onderzoeksraad, KU Leuven (PF/10/010)

  • Kevin J Verstrepen
  • Jan Michiels

Interuniversity Attraction Poles-Belgian Science Policy Office (IAP P7/28)

  • Jan Michiels

H2020 European Research Council (241426)

  • Kevin J Verstrepen

Human Frontier Science Program (RGP0050/2013)

  • Kevin J Verstrepen

Fonds Wetenschappelijk Onderzoek (G047112N)

  • Jan Michiels

Vlaams Instituut voor Biotechnologie

  • Kevin J Verstrepen

European Molecular Biology Organization

  • Kevin J Verstrepen

Fonds Wetenschappelijk Onderzoek (Postdoctoral Fellowship,12O1917N)

  • Bram Van den Bergh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wenying Shou, Fred Hutchinson Cancer Research Center, United States

Publication history

  1. Received: November 3, 2016
  2. Accepted: April 18, 2017
  3. Accepted Manuscript published: May 2, 2017 (version 1)
  4. Version of Record published: May 12, 2017 (version 2)

Copyright

© 2017, Swings et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,149
    Page views
  • 960
    Downloads
  • 33
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    Ankur V Patel et al.
    Tools and Resources

    Many software solutions are available for proteomics and glycomics studies, but none are ideal for the structural analysis of peptidoglycan (PG), the essential and major component of bacterial cell envelopes. It icomprises glycan chains and peptide stems, both containing unusual amino acids and sugars. This has forced the field to rely on manual analysis approaches, which are time-consuming, labour-intensive, and prone to error. The lack of automated tools has hampered the ability to perform high-throughput analyses and prevented the adoption of a standard methodology. Here, we describe a novel tool called PGFinder for the analysis of PG structure and demonstrate that it represents a powerful tool to quantify PG fragments and discover novel structural features. Our analysis workflow, which relies on open-access tools, is a breakthrough towards a consistent and reproducible analysis of bacterial PGs. It represents a significant advance towards peptidoglycomics as a full-fledged discipline.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Elizabeth Jaworski et al.
    Tools and Resources

    High-throughput genomics of SARS-CoV-2 is essential to characterize virus evolution and to identify adaptations that affect pathogenicity or transmission. While single-nucleotide variations (SNVs) are commonly considered as driving virus adaption, RNA recombination events that delete or insert nucleic acid sequences are also critical. Whole genome targeting sequencing of SARS-CoV-2 is typically achieved using pairs of primers to generate cDNA amplicons suitable for next-generation sequencing (NGS). However, paired-primer approaches impose constraints on where primers can be designed, how many amplicons are synthesized and requires multiple PCR reactions with non-overlapping primer pools. This imparts sensitivity to underlying SNVs and fails to resolve RNA recombination junctions that are not flanked by primer pairs. To address these limitations, we have designed an approach called ‘Tiled-ClickSeq’, which uses hundreds of tiled-primers spaced evenly along the virus genome in a single reverse-transcription reaction. The other end of the cDNA amplicon is generated by azido-nucleotides that stochastically terminate cDNA synthesis, removing the need for a paired-primer. A sequencing adaptor containing a Unique Molecular Identifier (UMI) is appended to the cDNA fragment using click-chemistry and a PCR reaction generates a final NGS library. Tiled-ClickSeq provides complete genome coverage, including the 5’UTR, at high depth and specificity to the virus on both Illumina and Nanopore NGS platforms. Here, we analyze multiple SARS-CoV-2 isolates and clinical samples to simultaneously characterize minority variants, sub-genomic mRNAs (sgmRNAs), structural variants (SVs) and D-RNAs. Tiled-ClickSeq therefore provides a convenient and robust platform for SARS-CoV-2 genomics that captures the full range of RNA species in a single, simple assay.