Computational models of O-LM cells are recruited by low or high theta frequency inputs depending on h-channel distributions

  1. Vladislav Sekulić  Is a corresponding author
  2. Frances K Skinner  Is a corresponding author
  1. University Health Network, Canada

Abstract

Although biophysical details of inhibitory neurons are becoming known, it is challenging to map these details onto function. Oriens-lacunosum/moleculare (O-LM) cells are inhibitory cells in the hippocampus that gate information flow, firing while phase-locked to theta rhythms. We build on our existing computational model database of O-LM cells to link model with function. We place our models in high-conductance states and modulate inhibitory inputs at a wide range of frequencies. We find preferred spiking recruitment of models at high (4-9 Hz) or low (2-5 Hz) theta depending on, respectively, the presence or absence of h-channels on their dendrites. This also depends on slow delayed-rectifier potassium channels, and preferred theta ranges shift when h-channels are potentiated by cyclic AMP. Our results suggest that O-LM cells can be differentially recruited by frequency-modulated inputs depending on specific channel types and distributions. This work exposes a strategy for understanding how biophysical characteristics contribute to function.

Article and author information

Author details

  1. Vladislav Sekulić

    Krembil Research Institute, University Health Network, Toronto, Canada
    For correspondence
    vlad.sekulic@gmail.com
    Competing interests
    No competing interests declared.
  2. Frances K Skinner

    Krembil Research Institute, University Health Network, Toronto, Canada
    For correspondence
    frances.skinner@gmail.com
    Competing interests
    Frances K Skinner, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7819-4202

Funding

Natural Sciences and Engineering Research Council of Canada (Discovery Grant,RGPIN 2016-06182,RGPIN 203700-11)

  • Frances K Skinner

Ontario Graduate Scholarship (Graduate Student Award)

  • Frances K Skinner

SciNet High Performance Consortium (SciNet HPC Consortium)

  • Frances K Skinner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Sekulić & Skinner

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,048
    views
  • 211
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vladislav Sekulić
  2. Frances K Skinner
(2017)
Computational models of O-LM cells are recruited by low or high theta frequency inputs depending on h-channel distributions
eLife 6:e22962.
https://doi.org/10.7554/eLife.22962

Share this article

https://doi.org/10.7554/eLife.22962

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.