Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice

  1. Carmelo Bellardita  Is a corresponding author
  2. Vittorio Caggiano
  3. Roberto Leiras
  4. Vanessa Caldeira
  5. Andrea Fuchs
  6. Julien Bouvier
  7. Peter Löw
  8. Ole Kiehn  Is a corresponding author
  1. Karolinska Institutet, Sweden
  2. Karolinska Institute, Sweden
  3. Paris Saclay Institute of Neuroscience, UMR9197, CNRS, Universite Paris-Sud, France

Abstract

Spasms after spinal cord injury (SCI) are debilitating involuntary muscle contractions that have been associated with increased motor neuron excitability and decreased inhibition. However, whether spasms involve activation of premotor spinal excitatory neuronal circuits is unknown. Here we use mouse genetics, electrophysiology, imaging and optogenetics to directly target major classes of spinal interneurons as well as motor neurons during spasms in a mouse model of chronic SCI. We find that assemblies of excitatory spinal interneurons are recruited by sensory input into functional circuits to generate persistent neural activity, which interacts with both the graded expression of plateau potentials in motor neurons to generate spasms, and inhibitory interneurons to curtail them. Our study reveals hitherto unrecognized neuronal mechanisms for the generation of persistent neural activity under pathophysiological conditions, opening up new targets for treatment of muscle spasms after SCI.

Article and author information

Author details

  1. Carmelo Bellardita

    Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    For correspondence
    carmelo.bellardita@ki.se
    Competing interests
    No competing interests declared.
  2. Vittorio Caggiano

    Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  3. Roberto Leiras

    Neuroscience Department, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  4. Vanessa Caldeira

    Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  5. Andrea Fuchs

    Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  6. Julien Bouvier

    Paris Saclay Institute of Neuroscience, UMR9197, CNRS, Universite Paris-Sud, Gif-sur-Yvette, France
    Competing interests
    No competing interests declared.
  7. Peter Löw

    Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  8. Ole Kiehn

    Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    For correspondence
    Ole.Kiehn@ki.se
    Competing interests
    Ole Kiehn, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5954-469X

Funding

European Research Council (693038)

  • Ole Kiehn

National Institute of Neurological Disorders and Stroke (R01 NS090919)

  • Ole Kiehn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Ethics

Animal experimentation: All surgical procedures and experimental manipulations were approved by the local ethical committee and the Swedish Animal Welfare Agency and included in the ethical permit N. 29/2014.

Version history

  1. Received: November 5, 2016
  2. Accepted: January 27, 2017
  3. Accepted Manuscript published: February 13, 2017 (version 1)
  4. Version of Record published: March 1, 2017 (version 2)
  5. Version of Record updated: April 16, 2018 (version 3)

Copyright

© 2017, Bellardita et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,470
    views
  • 570
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carmelo Bellardita
  2. Vittorio Caggiano
  3. Roberto Leiras
  4. Vanessa Caldeira
  5. Andrea Fuchs
  6. Julien Bouvier
  7. Peter Löw
  8. Ole Kiehn
(2017)
Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice
eLife 6:e23011.
https://doi.org/10.7554/eLife.23011

Share this article

https://doi.org/10.7554/eLife.23011

Further reading

    1. Neuroscience
    Ladan Shahshahani, Maedbh King ... Jörn Diedrichsen
    Research Article

    Functional magnetic resonance imaging (fMRI) studies have documented cerebellar activity across a wide array of tasks. However, the functional contribution of the cerebellum within these task domains remains unclear because cerebellar activity is often studied in isolation. This is problematic, as cerebellar fMRI activity may simply reflect the transmission of neocortical activity through fixed connections. Here, we present a new approach that addresses this problem. Rather than focus on task-dependent activity changes in the cerebellum alone, we ask if neocortical inputs to the cerebellum are gated in a task-dependent manner. We hypothesize that input is upregulated when the cerebellum functionally contributes to a task. We first validated this approach using a finger movement task, where the integrity of the cerebellum has been shown to be essential for the coordination of rapid alternating movements but not for force generation. While both neocortical and cerebellar activity increased with increasing speed and force, the speed-related changes in the cerebellum were larger than predicted by an optimized cortico-cerebellar connectivity model. We then applied the same approach in a cognitive domain, assessing how the cerebellum supports working memory. Enhanced gating was associated with the encoding of items in working memory, but not with the manipulation or retrieval of the items. Focusing on task-dependent gating of neocortical inputs to the cerebellum offers a promising approach for using fMRI to understand the specific contributions of the cerebellum to cognitive function.

    1. Neuroscience
    Anna Seggewisse, Michael Winding
    Insight

    The first neuronal wiring diagram of an insect nerve cord, which includes biological information on cell type and organisation, enables further investigation into premotor circuit function.