Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice

  1. Carmelo Bellardita  Is a corresponding author
  2. Vittorio Caggiano
  3. Roberto Leiras
  4. Vanessa Caldeira
  5. Andrea Fuchs
  6. Julien Bouvier
  7. Peter Löw
  8. Ole Kiehn  Is a corresponding author
  1. Karolinska Institutet, Sweden
  2. Karolinska Institute, Sweden
  3. Paris Saclay Institute of Neuroscience, UMR9197, CNRS, Universite Paris-Sud, France

Abstract

Spasms after spinal cord injury (SCI) are debilitating involuntary muscle contractions that have been associated with increased motor neuron excitability and decreased inhibition. However, whether spasms involve activation of premotor spinal excitatory neuronal circuits is unknown. Here we use mouse genetics, electrophysiology, imaging and optogenetics to directly target major classes of spinal interneurons as well as motor neurons during spasms in a mouse model of chronic SCI. We find that assemblies of excitatory spinal interneurons are recruited by sensory input into functional circuits to generate persistent neural activity, which interacts with both the graded expression of plateau potentials in motor neurons to generate spasms, and inhibitory interneurons to curtail them. Our study reveals hitherto unrecognized neuronal mechanisms for the generation of persistent neural activity under pathophysiological conditions, opening up new targets for treatment of muscle spasms after SCI.

Article and author information

Author details

  1. Carmelo Bellardita

    Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    For correspondence
    carmelo.bellardita@ki.se
    Competing interests
    No competing interests declared.
  2. Vittorio Caggiano

    Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  3. Roberto Leiras

    Neuroscience Department, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  4. Vanessa Caldeira

    Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  5. Andrea Fuchs

    Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  6. Julien Bouvier

    Paris Saclay Institute of Neuroscience, UMR9197, CNRS, Universite Paris-Sud, Gif-sur-Yvette, France
    Competing interests
    No competing interests declared.
  7. Peter Löw

    Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  8. Ole Kiehn

    Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    For correspondence
    Ole.Kiehn@ki.se
    Competing interests
    Ole Kiehn, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5954-469X

Funding

European Research Council (693038)

  • Ole Kiehn

National Institute of Neurological Disorders and Stroke (R01 NS090919)

  • Ole Kiehn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Ethics

Animal experimentation: All surgical procedures and experimental manipulations were approved by the local ethical committee and the Swedish Animal Welfare Agency and included in the ethical permit N. 29/2014.

Version history

  1. Received: November 5, 2016
  2. Accepted: January 27, 2017
  3. Accepted Manuscript published: February 13, 2017 (version 1)
  4. Version of Record published: March 1, 2017 (version 2)
  5. Version of Record updated: April 16, 2018 (version 3)

Copyright

© 2017, Bellardita et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,475
    views
  • 570
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carmelo Bellardita
  2. Vittorio Caggiano
  3. Roberto Leiras
  4. Vanessa Caldeira
  5. Andrea Fuchs
  6. Julien Bouvier
  7. Peter Löw
  8. Ole Kiehn
(2017)
Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice
eLife 6:e23011.
https://doi.org/10.7554/eLife.23011

Share this article

https://doi.org/10.7554/eLife.23011

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.