Long-range projection neurons in the taste circuit of Drosophila

  1. Heesoo Kim  Is a corresponding author
  2. Colleen Kirkhart
  3. Kristin Scott  Is a corresponding author
  1. University of California, Berkeley, United States
10 figures and 1 table

Figures

Figure 1 with 1 supplement
Identification of taste projection neurons.

(A) Projection pattern of bitter (red) and sugar (green) GRNs into the SEZ (top) and VNC (bottom). For A-D, magenta indicates neuropil; arrows indicate cell bodies; and scale bar, 50 μm. (B) Full …

https://doi.org/10.7554/eLife.23386.002
Figure 1—figure supplement 1
Detailed anatomy of TPNs.

(A) Single cell example of TPN1 (R30A08-Gal4 stochastically labels a single TPN1 neuron). TPN1 cell bodies are on the ventral surface of the third neuromere in the VNC. Each TPN1 cell (arrow) sends …

https://doi.org/10.7554/eLife.23386.003
Figure 2 with 1 supplement
TPNs are in close proximity to gustatory projections.

(A) Double labeling of TPNs (green) with sugar, bitter, pheromone, or water GRNs (magenta). Shown are the projections of TPN1 and TPN2 in the first leg ganglia of the VNC and the projections of TPN3 …

https://doi.org/10.7554/eLife.23386.005
Figure 2—figure supplement 1
Single plane examples of TPNs and gustatory projections.

Single plane images of TPNs (green) and sugar or bitter GRNs (magenta). Single planes (4.6 µm optical sections) are from the same specimens shown in Figure 2A.

https://doi.org/10.7554/eLife.23386.006
Figure 3 with 1 supplement
TPNs respond to taste compounds.

(A) Schematic brains showing anatomy of TPNs (green) and approximate region of calcium imaging (dashed box). (B) UAS-cd8-tdTomato signal used to locate axonal arbors of each neuron type. (C) △F …

https://doi.org/10.7554/eLife.23386.007
Figure 3—figure supplement 1
Calcium Imaging of TPNs with ectopic activation of GRNs.

Calcium responses in each TPN class were observed using GCaMP5 while a heat-activated channel (LexAop-dTRPA1) was expressed in either sugar GRNs (Gr5a-LexA) or bitter GRNs (Gr66a-LexA). In all …

https://doi.org/10.7554/eLife.23386.008
TPNs arborize near olfactory projection neurons.

(A) Co-labeling of TPN2 (green) and mushroom bodies (magenta) shows no overlap. (B) Co-labeling of TPN2 (green) and olfactory projection neurons (magenta) shows overlap in lateral horn (LH). Blue …

https://doi.org/10.7554/eLife.23386.009
Figure 5 with 1 supplement
Taste projection neurons influence proboscis extension.

(A) PER to activation with CsChrimson, in absence of a taste stimulus. Activation of sugar GRNs (Gr64f), TPN1, and TPN2 increase PER, compared to no retinal controls. For Gal4 control and …

https://doi.org/10.7554/eLife.23386.010
Figure 5—figure supplement 1
Genetic controls for PER experiments.

(A) Genetic controls for Figure 5a: PER responses to red light. No significant effect on PER was observed. Fisher’s exact tests. n = 51–55. (B) Genetic controls for Figure 5b: PER rate to …

https://doi.org/10.7554/eLife.23386.011
Figure 6 with 1 supplement
Taste projection neurons are essential for conditioned taste aversion.

(A) Schematic of aversive taste memory protocol experiments with flies expressing Shits in TPN1, TPN2 or TPN3. Flies were initially presented with 500 mM sucrose (pre-test) and only flies that …

https://doi.org/10.7554/eLife.23386.012
Figure 6—figure supplement 1
Memory experiment controls.

(A–B) Shibire and CsChrimson aversive memory experiments for second TPN3 Gal4 line (C220) shows qualitatively similar results to first Gal4 line (Figure 6D and F). Error bars are 95% CI; Fisher’s …

https://doi.org/10.7554/eLife.23386.013
TPN2 carries the CS signal, while TPN3 carries the US signal.

A and B. Aversive taste memory is impaired upon conditional silencing of TPN2 during either the pairing (A) or the testing/retrieval (B) phases, suggesting TPN2 carries the CS signal. (C) …

https://doi.org/10.7554/eLife.23386.014
Figure 8 with 1 supplement
TPNs act upstream of mushroom bodies to influence learned behaviors.

(A) Schematic for imaging calcium responses of PPL1-MV1 neurons to CsChrimson activation of TPN2 and TPN3. (B) Example single-animal light-triggered averages of PPL1-MV1 calcium responses to red …

https://doi.org/10.7554/eLife.23386.015
Figure 8—figure supplement 1
Controls for PPL1 imaging experiments.

(A–B) Imaging calcium responses of PPL1-MV neurons to CsChrimson activation of second TPN3 Gal4 line (C220) shows qualitatively similar results to first Gal4 line (Figure 8B and D). n = 9–11. Error …

https://doi.org/10.7554/eLife.23386.016
TPNs action on all PPL1 lobes.

(A) Schematic specifying PPL1 region focused on for calcium imaging, with CsChrimson activation of TPN2 or TPN3. (B) Average response (black line) and individual traces (gray, blue, and red lines) …

https://doi.org/10.7554/eLife.23386.017
TPN3 is not the only relay for bitter information to mushroom bodies .

(A and B) Schematic of imaging and nerve-cut experiment. Bitter GRNs are activated via CsChrimson and calcium responses of TPN3 and the PPL1-MV1 cluster are imaged. Dashed boxes indicate approximate …

https://doi.org/10.7554/eLife.23386.018

Tables

Table 1

Genotypes of Experimental Flies

https://doi.org/10.7554/eLife.23386.004
FigureDescriptionGenotype
1AGRN anatomyGr66a-Gal4/CyO; UAS-cd8-tdTomato/Gr64fLexA, LexAop-cd2-GFP
1BTPN1 anatomyUAS-GFP/+; R30A08-Gal4/+
1CTPN2 anatomyUAS-GFP/+; VT57358-Gal4/+
1DTPN3 anatomytub>Gal80>/X; UAS-GFP/+; C220-Gal4/hsFLP, MKRS
1 – fs1ATPN1 singleUAS-GFP/+; R30A08-Gal4/+
1 - fs1BTPN1 dendrite/axon+/CyO; R30A08-Gal4/UAS-DenMark, UAS-synaptotagmin-eGFP
1 - fs1C & DTPN2 mosaicstub>Gal80>/X; UAS-GFP/+; VT57358-Gal4/ hsFLP, MKRS
1 - fs1ETPN2 dendrite/axon+/CyO; VT57358-Gal4/UAS-DenMark, UAS-synaptotagmin-eGFP
1 - fs1FTPN3 – 2nd Gal4UAS-GFP/+; C220-Gal4/+
1 - fs1GTPN3 – 1st Gal4UAS-GFP/+; R11H09-Gal4/+
1 - fs1HTPN3 – 2 cells onlyUAS-GFP/UAS-RedStinger; C220-Gal4/R11H09-Gal4
1 - fs1ITPN3 dendrite/axon+/CyO; C220-Gal4/UAS-DenMark, UAS-synaptotagmin-eGFP
2A &
2 – fs1
Sugar GRN doublesUAS-cd8tdTomato/CyO; R30A08-Gal4 / Gr64fLexA, LexAop-cd2-GFP
UAS-cd8tdTomato/CyO; VT57358-Gal4 / Gr64fLexA, LexAop-cd2-GFP
UAS-cd8tdTomato/CyO; C220-Gal4 / Gr64fLexA, LexAop-cd2-GFP
2A &
2 – fs1
Bitter GRN doublesUAS-cd8tdTomato/Gr66a-LexA; R30A08-Gal4 / LexAop-cd2-GFP
UAS-cd8tdTomato/Gr66a-LexA; VT57358-Gal4 / LexAop-cd2-GFP
UAS-cd8tdTomato/Gr66a-LexA; C220-Gal4 / LexAop-cd2-GFP
2APheromone GRN doublesUAS-cd8tdTomato/ppk23-LexA; R30A08-Gal4 / LexAop-cd2-GFP
UAS-cd8tdTomato/ppk23-LexA; VT57358-Gal4 / LexAop-cd2-GFP
UAS-cd8tdTomato/ppk23-LexA; C220-Gal4 / LexAop-cd2-GFP
2AWater GRN doublesUAS-cd8tdTomato/ppk28-LexA, LexAop-cd2-GFP; R30A08-Gal4 / TM2 or 6b
UAS-cd8tdTomato/ppk28-LexA, LexAop-cd2-GFP; VT57358-Gal4 / TM2 or 6b
UAS-cd8tdTomato/ppk28-LexA, LexAop-cd2-GFP; C220-Gal4 / TM2 or 6b
2BSugar GRN GRASPGr5a-LexA/X; UAS-cd8tdTomato/LexAop-CD4::spGFP11;
R30A08-Gal4 or VT57358-Gal4 or C220-Gal4/UAS-CD4::spGFP1-10
2BBitter GRN GRASPGr66a-LexA/X; UAS-cd8tdTomato/LexAop-CD4::spGFP11;
R30A08-Gal4 or VT57358-Gal4 or C220-Gal4/UAS-CD4::spGFP1-10
3 A-F topTPN1 GCaMPUAS-cd8tdTomato/UAS-GCaMP6s; R30A08-Gal4/UAS-GCaMP6s
3 A-F middleTPN2 GCaMPUAS-cd8tdTomato/UAS-GCaMP6s; VT57358-Gal4/UAS-GCaMP6s
3 A-E bottom and GTPN3 GCaMPUAS-cd8tdTomato/UAS-GCaMP6s; R11H09-Gal4/UAS-GCaMP6s
3 – fs1 ATPN1-GCaMP sugar-TRPGr5a-LexA/X; UAS-GCaMP5/UAS-cd8tdTomato;
R30A08-Gal4/LexAop-dTRP
 TPN1-GCaMP
bitter-TRP
Gr66a-LexA/X; UAS-GCaMP5/UAS-cd8tdTomato;
R30A08-Gal4 /LexAop-dTRP
3 – fs1 BTPN2-GCaMP sugar-TRPGr5a-LexA/X; UAS-GCaMP5/UAS-cd8tdTomato;
VT57358-Gal4 /LexAop-dTRP
 TPN2-GCaMP
bitter-TRP
Gr66a-LexA/X; UAS-GCaMP5/UAS-cd8tdTomato;
VT57358-Gal4 /LexAop-dTRP
3 – fs1 CTPN3-GCaMP sugar-TRPGr5a-LexA/X; UAS-GCaMP5/UAS-cd8tdTomato;
C220-Gal4/LexAop-dTRP
 TPN3-GCaMP
bitter-TRP
Gr66a-LexA/X; UAS-GCaMP5/UAS-cd8tdTomato;
C220-Gal4/LexAop-dTRP
4ATPN2 & MBMB-dsRed/UAS-GFP; VT57358-Gal4/ TM2 or 6b
4FTPN3 & MBMB-dsRed/UAS-GFP; R11H09-Gal4/TM2 or 6b
4 B-ETPN2 & olfactory PNGH146-QUAS, QUAS-mtdTomato / UAS-GFP; VT57358-Gal4/+
4 G-JTPN3 & olfactory PNGH146-QUAS, QUAS-mtdTomato / UAS-GFP; R11H09-Gal4/+
   
5 A & BPER: noGal4UAS-CsChRimson/X; +; +
5 A & BPER: GR Gal4sUAS-CsChRimson/X; Gr64f-Gal4/+; TM2 or TM6b/+
UAS-CsChRimson/X; Gr66a-Gal4/+; TM2 or TM6b/+
5 A & BPER: TPN Gal4sUAS-CsChRimson/X; +; R30A08-Gal4/+
UAS-CsChRimson/X; +; VT57358-Gal4/+
UAS-CsChRimson/X; +; R11H09-Gal4/+
5 C & DShi PER behavior+ / UAS- Shibire(ts)
R30A08-Gal4/UAS-Shibire(ts)
VT57358-Gal4/UAS-Shibire(ts)
R30A08-Gal4, VT57358-Gal4/UAS-Shibire(ts)
R11H09-Gal4/UAS-Shibire(ts)
C220-Gal4/UAS-Shibire(ts)
5 – fs1A & BGr-Gal4sGr64f-Gal4/+; TM2 or TM6b/+
Gr66a-Gal4/+; TM2 or TM6b/+
5 – fs1A & BTPN-Gal4sR30A08-Gal4/+
VT57358-Gal4/+
R11H09-Gal4/+
C220-Gal4/+
5 – fs1 C & DTPN-Gal4s (controls for PER with Shi)R30A08-Gal4/+
VT57358-Gal4/+
R11H09-Gal4/+
C220-Gal4/+
6BMemory – TPN1 ShiR30A08-Gal4/UAS-Shibire(ts)
6CMemory – TPN2 ShiVT57358-Gal4/UAS-Shibire(ts)
6DMemory – TPN3 ShiR11H09-Gal4/UAS-Shibire(ts)
6FMemory – TPN3 ChrimsonUAS-CsChRimson/X; +; R11H09-Gal4/+
6 – fs1ATPN3 – 2nd Gal4X; +; C220-Gal4/UAS-Shibire(ts)
6 – fs1BTPN3 – 2nd Gal4UAS-CsChRimson/X; +; C220-Gal4/+
7 A & BMemory – TPN2 ShiVT57358-Gal4/UAS-Shibire(ts)
7 C & DMemory – TPN3 ShiR11H09-Gal4/UAS-Shibire(ts)
8 & 9PPL1 - controlUAS-CsChRimson/X; LexAop-GCaMP6s; TH-LexA/TM3-ser
8 & 9PPL1 – TPN2UAS-CsChRimson/X; LexAop-GCaMP6s; TH-LexA/ VT57358-Gal4
8 & 9PPL1 – TPN3UAS-CsChRimson/X; LexAop-GCaMP6s; TH-LexA/ R11H09-Gal4
8 – fs1APPL1 imagingUAS-CsChRimson/X; LexAop-GCaMP6s; TH-LexA/C220-Gal4
8 – fs1BPPL1 imagingUAS-CsChRimson/X; LexAop-GCaMP6s; TH-LexA/TM3-ser
UAS-CsChRimson/X; LexAop-GCaMP6s; TH-LexA/C220-Gal4
8 – fs1C-EPPL1 ex vivo imagingUAS-CsChRimson/X; LexAop-GCaMP6s; TH-LexA/ VT57358-Gal4
UAS-CsChRimson/X; LexAop-GCaMP6s; TH-LexA/ R11H09-Gal4
10 Gr66a-LexA, LexAop-CsChrimson / UAS-CD8-tdTomato; UAS-GCaMP6s / MB065B-Gal4 AD; R11H09-Gal4, UAS-GCaMP6s / MB065B-Gal4 DBD

Download links