The N-terminus of the prion protein is a toxic effector regulated by the C-terminus

  1. Bei Wu
  2. Alex McDonald
  3. Markham Kathleen
  4. Celeste B Rich
  5. Kyle P Mchugh
  6. Jörg Tatzelt
  7. Colby David
  8. Glenn L Millhauser
  9. David Harris  Is a corresponding author
  1. Boston University School of Medicine, United States
  2. University of California, Davis, United States
  3. University of Delaware, United States
  4. Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
  5. UC Santa Cruz, United States

Abstract

PrPC, the cellular isoform of the prion protein, serves to transduce the neurotoxic effects of PrPSc, the infectious isoform, but how this occurs is mysterious. Here, using a combination of electrophysiological, cellular, and biophysical techniques, we show that the flexible, N-terminal domain of PrPC functions as a powerful toxicity-transducing effector whose activity is tightly regulated in cis by the globular C-terminal domain. Ligands binding to the N-terminal domain abolish the spontaneous ionic currents associated with neurotoxic mutants of PrP, and the isolated N-terminal domain induces currents when expressed in the absence of the C-terminal domain. Anti-PrP antibodies targeting epitopes in the C-terminal domain induce currents, and cause degeneration of dendrites on murine hippocampal neurons, effects that entirely dependent on the effector function of the N-terminus. NMR experiments demonstrate intramolecular docking between N- and C-terminal domains of PrPC, revealing a novel auto-inhibitory mechanism that regulates the functional activity of PrPC.

Article and author information

Author details

  1. Bei Wu

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alex McDonald

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Markham Kathleen

    Department of Chemistry and Biochemistry, University of California, Davis, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Celeste B Rich

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kyle P Mchugh

    Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jörg Tatzelt

    Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5017-5528
  7. Colby David

    Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Glenn L Millhauser

    Department of Chemistry, UC Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. David Harris

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    For correspondence
    daharris@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6985-5790

Funding

National Institutes of Health (R01 NS065244)

  • Bei Wu
  • Alex McDonald
  • Celeste B Rich
  • David Harris

National Institutes of Health (R01 GM065790)

  • Markham Kathleen
  • Glenn L Millhauser

National Institutes of Health (GM104316)

  • Kyle P Mchugh
  • Colby David

National Science Foundation (Grant 1454508)

  • Kyle P Mchugh
  • Colby David

German Research Foundation ((TA 167/6))

  • Jörg Tatzelt

N.I.H. R01 NS065244 to D.A.H had a role in study design, data collection and interpretation.N.I.H. R01 GM065790 to G.L.M. had a role in data collection.N.I.H. GM104316 to D.W.C. and N.S.F. grant 1454508 to D.W.C. had a role in data collection.German Research Foundation (TA 167/6) to J.T. had a role in data collection.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#AN14997) of Boston University.

Reviewing Editor

  1. J Paul Taylor, St Jude Children's Research Hospital, United States

Publication history

  1. Received: November 21, 2016
  2. Accepted: May 17, 2017
  3. Accepted Manuscript published: May 20, 2017 (version 1)
  4. Accepted Manuscript updated: May 23, 2017 (version 2)
  5. Accepted Manuscript updated: May 24, 2017 (version 3)
  6. Version of Record published: June 13, 2017 (version 4)

Copyright

© 2017, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,645
    Page views
  • 623
    Downloads
  • 49
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bei Wu
  2. Alex McDonald
  3. Markham Kathleen
  4. Celeste B Rich
  5. Kyle P Mchugh
  6. Jörg Tatzelt
  7. Colby David
  8. Glenn L Millhauser
  9. David Harris
(2017)
The N-terminus of the prion protein is a toxic effector regulated by the C-terminus
eLife 6:e23473.
https://doi.org/10.7554/eLife.23473
  1. Further reading

Further reading

    1. Neuroscience
    Maria Cecilia Martinez, Camila Lidia Zold ... Mariano Andrés Belluscio
    Research Article

    The automatic initiation of actions can be highly functional. But occasionally these actions cannot be withheld and are released at inappropriate times, impulsively. Striatal activity has been shown to participate in the timing of action sequence initiation and it has been linked to impulsivity. Using a self-initiated task, we trained adult male rats to withhold a rewarded action sequence until a waiting time interval has elapsed. By analyzing neuronal activity we show that the striatal response preceding the initiation of the learned sequence is strongly modulated by the time subjects wait before eliciting the sequence. Interestingly, the modulation is steeper in adolescent rats, which show a strong prevalence of impulsive responses compared to adults. We hypothesize this anticipatory striatal activity reflects the animals’ subjective reward expectation, based on the elapsed waiting time, while the steeper waiting modulation in adolescence reflects age-related differences in temporal discounting, internal urgency states, or explore–exploit balance.

    1. Computational and Systems Biology
    2. Neuroscience
    Sergio Oscar Verduzco-Flores, Erik De Schutter
    Research Article Updated

    How dynamic interactions between nervous system regions in mammals performs online motor control remains an unsolved problem. In this paper, we show that feedback control is a simple, yet powerful way to understand the neural dynamics of sensorimotor control. We make our case using a minimal model comprising spinal cord, sensory and motor cortex, coupled by long connections that are plastic. It succeeds in learning how to perform reaching movements of a planar arm with 6 muscles in several directions from scratch. The model satisfies biological plausibility constraints, like neural implementation, transmission delays, local synaptic learning and continuous online learning. Using differential Hebbian plasticity the model can go from motor babbling to reaching arbitrary targets in less than 10 min of in silico time. Moreover, independently of the learning mechanism, properly configured feedback control has many emergent properties: neural populations in motor cortex show directional tuning and oscillatory dynamics, the spinal cord creates convergent force fields that add linearly, and movements are ataxic (as in a motor system without a cerebellum).