The Hippo pathway effector YAP is an essential regulator of ductal progenitor patterning in the mouse submandibular gland

  1. Aleksander D Szymaniak
  2. Rongjuan Mi
  3. Shannon E McCarthy
  4. Adam C Gower
  5. Taylor L Reynolds
  6. Michael Mingueneau
  7. Maria Kukuruzinska
  8. Xaralabos Varelas  Is a corresponding author
  1. Boston University School of Medicine, United States
  2. Biogen, United States
  3. Boston University School of Dental Medicine, United States

Abstract

Salivary glands, such as submandibular glands (SMGs), are composed of branched epithelial ductal networks that terminate in acini that together produce, transport and secrete saliva. Here, we show that the transcriptional regulator Yap, a key effector of the Hippo pathway, is required for the proper patterning and morphogenesis of SMG epithelium. Epithelial deletion of Yap in developing SMGs results in the loss of ductal structures, arising from reduced expression of the EGF family member Epiregulin, which we show is required for the expansion of Krt5/Krt14-positive ductal progenitors. We further show that epithelial deletion of the Lats1 and Lats2 genes, which encode kinases that restrict nuclear Yap localization, results in morphogenesis defects accompanied by an expansion of Krt5/Krt14-positive cells. Collectively, our data indicate that Yap-induced Epiregulin signaling promotes the identity of SMG ductal progenitors and that removal of nuclear Yap by Lats1/2-mediated signaling is critical for proper ductal maturation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Aleksander D Szymaniak

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  2. Rongjuan Mi

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  3. Shannon E McCarthy

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  4. Adam C Gower

    Boston University Clinical and Translational Science Institute, Boston University School of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  5. Taylor L Reynolds

    Immunology Research, Biogen, Cambridge, United States
    Competing interests
    Taylor L Reynolds, Employee of Biogen.
  6. Michael Mingueneau

    Immunology Research, Biogen, Cambridge, United States
    Competing interests
    Michael Mingueneau, Employee of Biogen.
  7. Maria Kukuruzinska

    Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  8. Xaralabos Varelas

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    For correspondence
    xvarelas@bu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2882-4541

Funding

March of Dimes Foundation (1-FY14-219)

  • Xaralabos Varelas

National Heart, Lung, and Blood Institute (R01 HL124392)

  • Xaralabos Varelas

Sjogren's Syndrome Foundation (Research Grant)

  • Xaralabos Varelas

National Institute of Dental and Craniofacial Research (R21 DE024954)

  • Maria Kukuruzinska

National Center for Advancing Translational Sciences (UL1-TR001430)

  • Adam C Gower
  • Xaralabos Varelas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.Animal care and handling was consistent with the recommendations of the Panel on Euthanasia of the American Veterinary Medical Association. Prior to the initiation of experiments, all study protocols were reviewed and modified according to the suggestions of the Boston University School of Medicine IACUC. The Boston University School of Medicine animal management program is accredited by the American Association for the Accreditation of Laboratory Animal Care, and meets National Institutes of Health standards as set forth in the Guide for the Care and Use of Laboratory Animals (DHHS Pub.No. (NIH) 85-23, rev 1985). Boston University's Animal Welfare Assurance number is A-3316-01.

Copyright

© 2017, Szymaniak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,190
    views
  • 503
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aleksander D Szymaniak
  2. Rongjuan Mi
  3. Shannon E McCarthy
  4. Adam C Gower
  5. Taylor L Reynolds
  6. Michael Mingueneau
  7. Maria Kukuruzinska
  8. Xaralabos Varelas
(2017)
The Hippo pathway effector YAP is an essential regulator of ductal progenitor patterning in the mouse submandibular gland
eLife 6:e23499.
https://doi.org/10.7554/eLife.23499

Share this article

https://doi.org/10.7554/eLife.23499

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Roger Huerlimann, Natacha Roux ... Timothy Ravasi
    Research Article

    Most teleost fishes exhibit a biphasic life history with a larval oceanic phase that is transformed into morphologically and physiologically different demersal, benthic, or pelagic juveniles. This process of transformation is characterized by a myriad of hormone-induced changes, during the often abrupt transition between larval and juvenile phases called metamorphosis. Thyroid hormones (TH) are known to be instrumental in triggering and coordinating this transformation but other hormonal systems such as corticoids, might be also involved as it is the case in amphibians. In order to investigate the potential involvement of these two hormonal pathways in marine fish post-embryonic development, we used the Malabar grouper (Epinephelus malabaricus) as a model system. We assembled a chromosome-scale genome sequence and conducted a transcriptomic analysis of nine larval developmental stages. We studied the expression patterns of genes involved in TH and corticoid pathways, as well as four biological processes known to be regulated by TH in other teleost species: ossification, pigmentation, visual perception, and metabolism. Surprisingly, we observed an activation of many of the same pathways involved in metamorphosis also at an early stage of the larval development, suggesting an additional implication of these pathways in the formation of early larval features. Overall, our data brings new evidence to the controversial interplay between corticoids and thyroid hormones during metamorphosis as well as, surprisingly, during the early larval development. Further experiments will be needed to investigate the precise role of both pathways during these two distinct periods and whether an early activation of both corticoid and TH pathways occurs in other teleost species.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.