The Hippo pathway effector YAP is an essential regulator of ductal progenitor patterning in the mouse submandibular gland

  1. Aleksander D Szymaniak
  2. Rongjuan Mi
  3. Shannon E McCarthy
  4. Adam C Gower
  5. Taylor L Reynolds
  6. Michael Mingueneau
  7. Maria Kukuruzinska
  8. Xaralabos Varelas  Is a corresponding author
  1. Boston University School of Medicine, United States
  2. Biogen, United States
  3. Boston University School of Dental Medicine, United States

Abstract

Salivary glands, such as submandibular glands (SMGs), are composed of branched epithelial ductal networks that terminate in acini that together produce, transport and secrete saliva. Here, we show that the transcriptional regulator Yap, a key effector of the Hippo pathway, is required for the proper patterning and morphogenesis of SMG epithelium. Epithelial deletion of Yap in developing SMGs results in the loss of ductal structures, arising from reduced expression of the EGF family member Epiregulin, which we show is required for the expansion of Krt5/Krt14-positive ductal progenitors. We further show that epithelial deletion of the Lats1 and Lats2 genes, which encode kinases that restrict nuclear Yap localization, results in morphogenesis defects accompanied by an expansion of Krt5/Krt14-positive cells. Collectively, our data indicate that Yap-induced Epiregulin signaling promotes the identity of SMG ductal progenitors and that removal of nuclear Yap by Lats1/2-mediated signaling is critical for proper ductal maturation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Aleksander D Szymaniak

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  2. Rongjuan Mi

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  3. Shannon E McCarthy

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  4. Adam C Gower

    Boston University Clinical and Translational Science Institute, Boston University School of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  5. Taylor L Reynolds

    Immunology Research, Biogen, Cambridge, United States
    Competing interests
    Taylor L Reynolds, Employee of Biogen.
  6. Michael Mingueneau

    Immunology Research, Biogen, Cambridge, United States
    Competing interests
    Michael Mingueneau, Employee of Biogen.
  7. Maria Kukuruzinska

    Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  8. Xaralabos Varelas

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    For correspondence
    xvarelas@bu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2882-4541

Funding

March of Dimes Foundation (1-FY14-219)

  • Xaralabos Varelas

National Heart, Lung, and Blood Institute (R01 HL124392)

  • Xaralabos Varelas

Sjogren's Syndrome Foundation (Research Grant)

  • Xaralabos Varelas

National Institute of Dental and Craniofacial Research (R21 DE024954)

  • Maria Kukuruzinska

National Center for Advancing Translational Sciences (UL1-TR001430)

  • Adam C Gower
  • Xaralabos Varelas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Clare Blackburn, MRC Centre for Regenerative Medicine, University of Edinburgh, United Kingdom

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.Animal care and handling was consistent with the recommendations of the Panel on Euthanasia of the American Veterinary Medical Association. Prior to the initiation of experiments, all study protocols were reviewed and modified according to the suggestions of the Boston University School of Medicine IACUC. The Boston University School of Medicine animal management program is accredited by the American Association for the Accreditation of Laboratory Animal Care, and meets National Institutes of Health standards as set forth in the Guide for the Care and Use of Laboratory Animals (DHHS Pub.No. (NIH) 85-23, rev 1985). Boston University's Animal Welfare Assurance number is A-3316-01.

Version history

  1. Received: November 22, 2016
  2. Accepted: May 8, 2017
  3. Accepted Manuscript published: May 11, 2017 (version 1)
  4. Version of Record published: June 9, 2017 (version 2)

Copyright

© 2017, Szymaniak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,138
    Page views
  • 501
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aleksander D Szymaniak
  2. Rongjuan Mi
  3. Shannon E McCarthy
  4. Adam C Gower
  5. Taylor L Reynolds
  6. Michael Mingueneau
  7. Maria Kukuruzinska
  8. Xaralabos Varelas
(2017)
The Hippo pathway effector YAP is an essential regulator of ductal progenitor patterning in the mouse submandibular gland
eLife 6:e23499.
https://doi.org/10.7554/eLife.23499

Share this article

https://doi.org/10.7554/eLife.23499

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD-subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD-subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.