Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

  1. Anitha Manohar
  2. Guglielmo Foffani
  3. Patrick D Ganzer
  4. John R Bethea
  5. Karen Moxon  Is a corresponding author
  1. Drexel University, United States
  2. CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Spain

Abstract

After paralyzing spinal cord injury the adult nervous system has little ability to 'heal' spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury.

Article and author information

Author details

  1. Anitha Manohar

    School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3011-2623
  2. Guglielmo Foffani

    CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick D Ganzer

    School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. John R Bethea

    Department of Biology, Drexel University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Karen Moxon

    School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
    For correspondence
    moxon@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5790-097X

Funding

National Science Foundation (CBET 1402984)

  • Anitha Manohar
  • Guglielmo Foffani
  • Patrick D Ganzer
  • John R Bethea

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ole Kiehn, Karolinska Institutet, Sweden

Ethics

Animal experimentation: All animal procedures were conducted in accordance with Drexel University Institutional Animal Care and Use Committee-approved protocols (Protocol# 20069 and Protocol#18374)

Version history

  1. Received: December 3, 2016
  2. Accepted: June 22, 2017
  3. Accepted Manuscript published: June 29, 2017 (version 1)
  4. Version of Record published: July 6, 2017 (version 2)

Copyright

© 2017, Manohar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,610
    views
  • 384
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anitha Manohar
  2. Guglielmo Foffani
  3. Patrick D Ganzer
  4. John R Bethea
  5. Karen Moxon
(2017)
Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats
eLife 6:e23532.
https://doi.org/10.7554/eLife.23532

Share this article

https://doi.org/10.7554/eLife.23532

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.