Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

  1. Anitha Manohar
  2. Guglielmo Foffani
  3. Patrick D Ganzer
  4. John R Bethea
  5. Karen Moxon  Is a corresponding author
  1. Drexel University, United States
  2. CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Spain

Abstract

After paralyzing spinal cord injury the adult nervous system has little ability to 'heal' spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury.

Article and author information

Author details

  1. Anitha Manohar

    School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3011-2623
  2. Guglielmo Foffani

    CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick D Ganzer

    School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. John R Bethea

    Department of Biology, Drexel University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Karen Moxon

    School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
    For correspondence
    moxon@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5790-097X

Funding

National Science Foundation (CBET 1402984)

  • Anitha Manohar
  • Guglielmo Foffani
  • Patrick D Ganzer
  • John R Bethea

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were conducted in accordance with Drexel University Institutional Animal Care and Use Committee-approved protocols (Protocol# 20069 and Protocol#18374)

Copyright

© 2017, Manohar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,683
    views
  • 392
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anitha Manohar
  2. Guglielmo Foffani
  3. Patrick D Ganzer
  4. John R Bethea
  5. Karen Moxon
(2017)
Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats
eLife 6:e23532.
https://doi.org/10.7554/eLife.23532

Share this article

https://doi.org/10.7554/eLife.23532

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.