Introduction of a male-harming mitochondrial haplotype via 'Trojan Females' achieves population suppression in fruit flies

  1. Jonci Nikolai Wolff  Is a corresponding author
  2. Neil J Gemmell
  3. Daniel M Tompkins
  4. Damian K Dowling
  1. Monash University, Australia
  2. University of Otago, New Zealand
  3. Landcare Research, New Zealand

Abstract

Pests are a global threat to biodiversity, ecosystem function, and human health. Pest control approaches are thus numerous, but their implementation costly, damaging to non-target species, and ineffective at low population densities. The Trojan Female Technique (TFT) is a prospective self-perpetuating control technique that is species-specific and predicted to be effective at low densities. The goal of the TFT is to harness naturally-occurring mutations in the mitochondrial genome that impair male fertility while having no effect on females. Here, we provide proof-of-concept for the TFT, by showing that introduction of a male fertility-impairing mtDNA haplotype into replicated populations of Drosophila melanogaster causes numerical population suppression, with the magnitude of effect positively correlated with its frequency at trial inception. Further development of the TFT could lead to establishing a control strategy that overcomes limitations of conventional approaches, with broad applicability to invertebrate and vertebrate species, to control environmental and economic pests.

Article and author information

Author details

  1. Jonci Nikolai Wolff

    School of Biological Sciences, Monash University, Melbourne, Australia
    For correspondence
    jonci.wolff@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8809-5010
  2. Neil J Gemmell

    Department of Anatomy, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0671-3637
  3. Daniel M Tompkins

    Landcare Research, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  4. Damian K Dowling

    School of Biological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

New Zealand Ministry of Business, Innovation and Employment (Smart Ideas Grant)

  • Neil J Gemmell
  • Daniel M Tompkins
  • Damian K Dowling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Wolff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,751
    views
  • 328
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonci Nikolai Wolff
  2. Neil J Gemmell
  3. Daniel M Tompkins
  4. Damian K Dowling
(2017)
Introduction of a male-harming mitochondrial haplotype via 'Trojan Females' achieves population suppression in fruit flies
eLife 6:e23551.
https://doi.org/10.7554/eLife.23551

Share this article

https://doi.org/10.7554/eLife.23551

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Rashmi Sukumaran, Achuthsankar S Nair, Moinak Banerjee
    Research Article

    Burden of stroke differs by region, which could be attributed to differences in comorbid conditions and ethnicity. Genomewide variation acts as a proxy marker for ethnicity, and comorbid conditions. We present an integrated approach to understand this variation by considering prevalence and mortality rates of stroke and its comorbid risk for 204 countries from 2009 to 2019, and Genome-wide association studies (GWAS) risk variant for all these conditions. Global and regional trend analysis of rates using linear regression, correlation, and proportion analysis, signifies ethnogeographic differences. Interestingly, the comorbid conditions that act as risk drivers for stroke differed by regions, with more of metabolic risk in America and Europe, in contrast to high systolic blood pressure in Asian and African regions. GWAS risk loci of stroke and its comorbid conditions indicate distinct population stratification for each of these conditions, signifying for population-specific risk. Unique and shared genetic risk variants for stroke, and its comorbid and followed up with ethnic-specific variation can help in determining regional risk drivers for stroke. Unique ethnic-specific risk variants and their distinct patterns of linkage disequilibrium further uncover the drivers for phenotypic variation. Therefore, identifying population- and comorbidity-specific risk variants might help in defining the threshold for risk, and aid in developing population-specific prevention strategies for stroke.

    1. Genetics and Genomics
    Wenjing Liu, Shujin Li ... Xianjun Zhu
    Research Article

    Familial exudative vitreoretinopathy (FEVR) is a severe genetic disorder characterized by incomplete vascularization of the peripheral retina and associated symptoms that can lead to vision loss. However, the underlying genetic causes of approximately 50% of FEVR cases remain unknown. Here, we report two heterozygous variants in calcyphosine-like gene (CAPSL) that is associated with FEVR. Both variants exhibited compromised CAPSL protein expression. Vascular endothelial cell (EC)-specific inactivation of Capsl resulted in delayed radial/vertical vascular progression, compromised endothelial proliferation/migration, recapitulating the human FEVR phenotypes. CAPSL-depleted human retinal microvascular endothelial cells (HRECs) exhibited impaired tube formation, decreased cell proliferation, disrupted cell polarity establishment, and filopodia/lamellipodia formation, as well as disrupted collective cell migration. Transcriptomic and proteomic profiling revealed that CAPSL abolition inhibited the MYC signaling axis, in which the expression of core MYC targeted genes were profoundly decreased. Furthermore, a combined analysis of CAPSL-depleted HRECs and c-MYC-depleted human umbilical vein endothelial cells uncovered similar transcription patterns. Collectively, this study reports a novel FEVR-associated candidate gene, CAPSL, which provides valuable information for genetic counseling of FEVR. This study also reveals that compromised CAPSL function may cause FEVR through MYC axis, shedding light on the potential involvement of MYC signaling in the pathogenesis of FEVR.