Introduction of a male-harming mitochondrial haplotype via 'Trojan Females' achieves population suppression in fruit flies

  1. Jonci Nikolai Wolff  Is a corresponding author
  2. Neil J Gemmell
  3. Daniel M Tompkins
  4. Damian K Dowling
  1. Monash University, Australia
  2. University of Otago, New Zealand
  3. Landcare Research, New Zealand

Abstract

Pests are a global threat to biodiversity, ecosystem function, and human health. Pest control approaches are thus numerous, but their implementation costly, damaging to non-target species, and ineffective at low population densities. The Trojan Female Technique (TFT) is a prospective self-perpetuating control technique that is species-specific and predicted to be effective at low densities. The goal of the TFT is to harness naturally-occurring mutations in the mitochondrial genome that impair male fertility while having no effect on females. Here, we provide proof-of-concept for the TFT, by showing that introduction of a male fertility-impairing mtDNA haplotype into replicated populations of Drosophila melanogaster causes numerical population suppression, with the magnitude of effect positively correlated with its frequency at trial inception. Further development of the TFT could lead to establishing a control strategy that overcomes limitations of conventional approaches, with broad applicability to invertebrate and vertebrate species, to control environmental and economic pests.

Article and author information

Author details

  1. Jonci Nikolai Wolff

    School of Biological Sciences, Monash University, Melbourne, Australia
    For correspondence
    jonci.wolff@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8809-5010
  2. Neil J Gemmell

    Department of Anatomy, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0671-3637
  3. Daniel M Tompkins

    Landcare Research, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  4. Damian K Dowling

    School of Biological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

New Zealand Ministry of Business, Innovation and Employment (Smart Ideas Grant)

  • Neil J Gemmell
  • Daniel M Tompkins
  • Damian K Dowling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marcel Dicke, Wageningen University, Netherlands

Publication history

  1. Received: November 22, 2016
  2. Accepted: April 27, 2017
  3. Accepted Manuscript published: May 3, 2017 (version 1)
  4. Version of Record published: May 23, 2017 (version 2)

Copyright

© 2017, Wolff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,591
    Page views
  • 317
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonci Nikolai Wolff
  2. Neil J Gemmell
  3. Daniel M Tompkins
  4. Damian K Dowling
(2017)
Introduction of a male-harming mitochondrial haplotype via 'Trojan Females' achieves population suppression in fruit flies
eLife 6:e23551.
https://doi.org/10.7554/eLife.23551

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Michael J Lafferty, Nil Aygün ... Jason L Stein
    Research Article Updated

    Expression quantitative trait loci (eQTL) data have proven important for linking non-coding loci to protein-coding genes. But eQTL studies rarely measure microRNAs (miRNAs), small non-coding RNAs known to play a role in human brain development and neurogenesis. Here, we performed small-RNA sequencing across 212 mid-gestation human neocortical tissue samples, measured 907 expressed miRNAs, discovering 111 of which were novel, and identified 85 local-miRNA-eQTLs. Colocalization of miRNA-eQTLs with GWAS summary statistics yielded one robust colocalization of miR-4707–3p expression with educational attainment and brain size phenotypes, where the miRNA expression increasing allele was associated with decreased brain size. Exogenous expression of miR-4707–3p in primary human neural progenitor cells decreased expression of predicted targets and increased cell proliferation, indicating miR-4707–3p modulates progenitor gene regulation and cell fate decisions. Integrating miRNA-eQTLs with existing GWAS yielded evidence of a miRNA that may influence human brain size and function via modulation of neocortical brain development.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Po Jui Chen, Anna B McMullin ... David Bates
    Research Article Updated

    Bidirectional DNA replication complexes initiated from the same origin remain colocalized in a factory configuration for part or all their lifetimes. However, there is little evidence that sister replisomes are functionally interdependent, and the consequence of factory replication is unknown. Here, we investigated the functional relationship between sister replisomes in Escherichia coli, which naturally exhibits both factory and solitary configurations in the same replication cycle. Using an inducible transcription factor roadblocking system, we found that blocking one replisome caused a significant decrease in overall progression and velocity of the sister replisome. Remarkably, progression was impaired only if the block occurred while sister replisomes were still in a factory configuration – blocking one fork had no significant effect on the other replisome when sister replisomes were physically separate. Disruption of factory replication also led to increased fork stalling and requirement of fork restart mechanisms. These results suggest that physical association between sister replisomes is important for establishing an efficient and uninterrupted replication program. We discuss the implications of our findings on mechanisms of replication factory structure and function, and cellular strategies of replicating problematic DNA such as highly transcribed segments.