Silent synapses generate sparse and orthogonal action potential firing in adult-born hippocampal granule cells

  1. Liyi Li
  2. Sebastien Sultan
  3. Stefanie Heigele
  4. Charlotte Schmidt-Salzmann
  5. Nicolas Toni
  6. Josef Bischofberger  Is a corresponding author
  1. University of Basel, Switzerland
  2. University of Lausanne, Switzerland
  3. University Hospital Freiburg, Germany

Abstract

In adult neurogenesis young neurons connect to the existing network via formation of thousands of new synapses. At early developmental stages, glutamatergic synapses are sparse, immature and functionally ‘silent’, expressing mainly NMDA receptors. Here we show in 2- to 3-week-old young neurons of adult mice, that brief-burst activity in glutamatergic fibers is sufficient to induce postsynaptic AP firing in the absence of AMPA receptors. The enhanced excitability of the young neurons lead to efficient temporal summation of small NMDA currents, dynamic unblocking of silent synapses and NMDA-receptor-dependent AP firing. Therefore, early synaptic inputs are powerfully converted into reliable spiking output. Furthermore, due to high synaptic gain, small dendritic trees and sparse connectivity, neighboring young neurons are activated by different distinct subsets of afferent fibers with minimal overlap. Taken together, synaptic recruitment of young neurons generates sparse and orthogonal AP firing, which may support sparse coding during hippocampal information processing.

Article and author information

Author details

  1. Liyi Li

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Sebastien Sultan

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Stefanie Heigele

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Charlotte Schmidt-Salzmann

    Klinik für Innere Medizin I, University Hospital Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicolas Toni

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Josef Bischofberger

    Department of Biomedicine, University of Basel, Basel, Switzerland
    For correspondence
    josef.bischofberger@unibas.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4006-1663

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Project 31003A_13301)

  • Josef Bischofberger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko Goda, RIKEN, Japan

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the FELASA Guide for the Care and Use of Laboratory Animals. The protocol for use and care of experimental animals (mice) in this project was approved by the Animal Ethics Advisory committee of the Kanton Basel (2385_26940, 2438_26489, Kantonales Verterinaeramt BS, Switzerland).

Version history

  1. Received: November 24, 2016
  2. Accepted: August 7, 2017
  3. Accepted Manuscript published: August 8, 2017 (version 1)
  4. Version of Record published: September 1, 2017 (version 2)

Copyright

© 2017, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,230
    views
  • 441
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Liyi Li
  2. Sebastien Sultan
  3. Stefanie Heigele
  4. Charlotte Schmidt-Salzmann
  5. Nicolas Toni
  6. Josef Bischofberger
(2017)
Silent synapses generate sparse and orthogonal action potential firing in adult-born hippocampal granule cells
eLife 6:e23612.
https://doi.org/10.7554/eLife.23612

Share this article

https://doi.org/10.7554/eLife.23612

Further reading

    1. Neuroscience
    Jack W Lindsey, Elias B Issa
    Research Article

    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity (‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.

    1. Neuroscience
    Zhaoran Zhang, Huijun Wang ... Kunlin Wei
    Research Article

    The sensorimotor system can recalibrate itself without our conscious awareness, a type of procedural learning whose computational mechanism remains undefined. Recent findings on implicit motor adaptation, such as over-learning from small perturbations and fast saturation for increasing perturbation size, challenge existing theories based on sensory errors. We argue that perceptual error, arising from the optimal combination of movement-related cues, is the primary driver of implicit adaptation. Central to our theory is the increasing sensory uncertainty of visual cues with increasing perturbations, which was validated through perceptual psychophysics (Experiment 1). Our theory predicts the learning dynamics of implicit adaptation across a spectrum of perturbation sizes on a trial-by-trial basis (Experiment 2). It explains proprioception changes and their relation to visual perturbation (Experiment 3). By modulating visual uncertainty in perturbation, we induced unique adaptation responses in line with our model predictions (Experiment 4). Overall, our perceptual error framework outperforms existing models based on sensory errors, suggesting that perceptual error in locating one’s effector, supported by Bayesian cue integration, underpins the sensorimotor system’s implicit adaptation.