DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids

Abstract

The number of children born since the origin of Assisted Reproductive Technologies (ART) exceeds 5 million. The majority seem healthy, but a higher frequency of defects has been reported among ART-conceived infants, suggesting an epigenetic cost. We report the first whole-genome DNA methylation datasets from single pig blastocysts showing differences between in vivo and in vitro produced embryos. Blastocysts were produced in vitro either without (C-IVF) or in the presence of natural reproductive fluids (Natur-IVF). Natur-IVF embryos were of higher quality than C-IVF in terms of cell number and hatching ability to. RNA-Seq and DNA methylation analyses showed that Natur-IVF embryos have expression and methylation patterns closer to in vivo blastocysts. Genes involved in reprogramming, imprinting and development were affected by culture, with fewer aberrations in Natur-IVF embryos. Methylation analysis detected methylated changes in C-IVF, but not in Natur-IVF, at genes whose methylation could be critical, such as IGF2R and NNAT.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Sebastian Canovas

    Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Elena Ivanova

    Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Raquel Romar

    Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Soledad García-Martínez

    Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Cristina Soriano-Úbeda

    Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Francisco Alberto A García-Vázquez

    Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Heba Saadeh

    Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Simon Andrews

    Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Gavin Kelsey

    Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9762-5634
  10. Pilar Coy

    Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
    For correspondence
    pcoy@um.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3943-1890

Funding

Research Councils UK

  • Gavin Kelsey

Ministerio de Economía y Competitividad (AGL2012-40180-C03-01 and AGL2015-66341-R)

  • Pilar Coy

Ministerio de Educación, Cultura y Deporte (PRX14/00348)

  • Pilar Coy

Fundación Séneca. Región de Murcia. Spain (20040/GERM/16)

  • Pilar Coy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was carried out in strict accordance with the recommendations in the Guiding Principles for the Care and Use of Animals (DHEW Publication, NIH, 80-23). The protocol was approved by the Ethical Committee for Experimentation with Animals of the University of Murcia, Spain (Project Code: 192/2015).

Copyright

© 2017, Canovas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,367
    views
  • 956
    downloads
  • 119
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian Canovas
  2. Elena Ivanova
  3. Raquel Romar
  4. Soledad García-Martínez
  5. Cristina Soriano-Úbeda
  6. Francisco Alberto A García-Vázquez
  7. Heba Saadeh
  8. Simon Andrews
  9. Gavin Kelsey
  10. Pilar Coy
(2017)
DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids
eLife 6:e23670.
https://doi.org/10.7554/eLife.23670

Share this article

https://doi.org/10.7554/eLife.23670

Further reading

    1. Developmental Biology
    Thomas A Bos, Elizaveta Polyakova ... Monique RM Jongbloed
    Research Article Updated

    Human autonomic neuronal cell models are emerging as tools for modeling diseases such as cardiac arrhythmias. In this systematic review, we compared 33 articles applying 14 different protocols to generate sympathetic neurons and 3 different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half showed evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models that include multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two-thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modeling.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.