The computational nature of memory modification

  1. Samuel J Gershman  Is a corresponding author
  2. Marie-H Monfils
  3. Norman A Kenneth
  4. Yael Niv
  1. Harvard University, United States
  2. University of Texas at Austin, United States
  3. Princeton University, United States

Abstract

Retrieving a memory can modify its influence on subsequent behavior. We develop a computational theory of memory modification, according to which modification of a memory trace occurs through classical associative learning, but which memory trace is eligible for modification depends on a structure learning mechanism that discovers the units of association by segmenting the stream of experience into statistically distinct clusters (latent causes). New memories are formed when the structure learning mechanism infers that a new latent cause underlies current sensory observations. By the same token, old memories are modified when old and new sensory observations are inferred to have been generated by the same latent cause. We derive this framework from probabilistic principles, and present a computational implementation. Simulations demonstrate that our model can reproduce the major experimental findings from studies of memory modification in the Pavlovian conditioning literature.

Article and author information

Author details

  1. Samuel J Gershman

    Department of Psychology, Harvard University, Cambridge, United States
    For correspondence
    gershman@fas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6546-3298
  2. Marie-H Monfils

    Department of Psychology, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Norman A Kenneth

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yael Niv

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0259-8371

Funding

National Science Foundation (Graduate research fellowship)

  • Samuel J Gershman

Sloan Research Foundation (Sloan Research Fellowship)

  • Yael Niv

National Institutes of Health (R01MH091147)

  • Marie-H Monfils

National Institutes of Health (R21MH086805)

  • Marie-H Monfils

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael J Frank, Brown University, United States

Version history

  1. Received: December 10, 2016
  2. Accepted: March 13, 2017
  3. Accepted Manuscript published: March 15, 2017 (version 1)
  4. Accepted Manuscript updated: March 16, 2017 (version 2)
  5. Version of Record published: April 13, 2017 (version 3)
  6. Version of Record updated: May 22, 2017 (version 4)

Copyright

© 2017, Gershman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,331
    views
  • 1,413
    downloads
  • 105
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel J Gershman
  2. Marie-H Monfils
  3. Norman A Kenneth
  4. Yael Niv
(2017)
The computational nature of memory modification
eLife 6:e23763.
https://doi.org/10.7554/eLife.23763

Share this article

https://doi.org/10.7554/eLife.23763

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.