Towards a mechanistic foundation of evolutionary theory

  1. Michael Doebeli  Is a corresponding author
  2. Yaroslav Ispolatov
  3. Burt Simon
  1. University of British Columbia, Canada
  2. Universidad de Santiago de Chile, Chile
  3. University of Colorado, Denver, United States

Abstract

Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.

Article and author information

Author details

  1. Michael Doebeli

    Department of Zoology, University of British Columbia, Vancouver, Canada
    For correspondence
    doebeli@zoology.ubc.ca
    Competing interests
    Michael Doebeli, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5975-5710
  2. Yaroslav Ispolatov

    Departamento de Fisica, Universidad de Santiago de Chile, Santiago, Chile
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0201-3396
  3. Burt Simon

    Department of Mathematical and Statistical Sciences, University of Colorado, Denver, Denver, United States
    Competing interests
    No competing interests declared.

Funding

Natural Sciences and Engineering Research Council of Canada (219930)

  • Michael Doebeli

Fondo Nacional de Desarrollo Científico y Tecnológico (1151524)

  • Yaroslav Ispolatov

John Simon Guggenheim Memorial Foundation

  • Michael Doebeli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Doebeli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,354
    views
  • 1,532
    downloads
  • 91
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Doebeli
  2. Yaroslav Ispolatov
  3. Burt Simon
(2017)
Towards a mechanistic foundation of evolutionary theory
eLife 6:e23804.
https://doi.org/10.7554/eLife.23804

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.