1. Structural Biology and Molecular Biophysics
Download icon

The RNF168 paralog RNF169 defines a new class of ubiquitylated-histone reader involved in the response to DNA damage

  1. Julianne Kitevski-LeBlanc
  2. Amélie Fradet-Turcotte
  3. Predrag Kukic
  4. Marcus D Wilson
  5. Guillem Portella
  6. Tairan Yuwen
  7. Stephanie Panier
  8. Shili Duan
  9. Marella D Canny
  10. Hugo van Ingen
  11. Cheryl H Arrowsmith
  12. John L Rubinstein
  13. Michele Vendruscolo
  14. Daniel Durocher  Is a corresponding author
  15. Lewis E Kay  Is a corresponding author
  1. University of Toronto, Canada
  2. Mount Sinai Hospital, Canada
  3. University of Cambridge, United Kingdom
  4. The Francis Crick Research Institute, United Kingdom
  5. Leiden University, Netherlands
Research Article
  • Cited 29
  • Views 2,362
  • Annotations
Cite this article as: eLife 2017;6:e23872 doi: 10.7554/eLife.23872

Abstract

Site-specific histone ubiquitylation plays a central role in orchestrating the response to DNA double-strand breaks (DSBs). DSBs elicit a cascade of events controlled by the ubiquitin ligase RNF168, which promotes the accumulation of repair factors such as 53BP1 and BRCA1 on the chromatin flanking the break site. RNF168 also promotes its own accumulation, and that of its paralog RNF169, but how they recognize ubiquitylated chromatin is unknown. Using methyl-TROSY solution NMR spectroscopy and molecular dynamics simulations, we present an atomic resolution model of human RNF169 binding to a ubiquitylated nucleosome, and validate it by electron cryomicroscopy. We establish that RNF169 binds to ubiquitylated H2A-Lys13/Lys15 in a manner that involves its canonical ubiquitin-binding helix and a pair of arginine-rich motifs that interact with the nucleosome acidic patch. This three-pronged interaction mechanism is distinct from that by which 53BP1 binds to ubiquitylated H2A-Lys15 highlighting the diversity in site-specific recognition of ubiquitylated nucleosomes.

Article and author information

Author details

  1. Julianne Kitevski-LeBlanc

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Amélie Fradet-Turcotte

    The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Predrag Kukic

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Marcus D Wilson

    The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9551-5514
  5. Guillem Portella

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Tairan Yuwen

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3504-7995
  7. Stephanie Panier

    The Francis Crick Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Shili Duan

    Structural Genomics Consortium, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Marella D Canny

    Department of Medical Biophysics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Hugo van Ingen

    Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Cheryl H Arrowsmith

    Department of Medical Biophysics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. John L Rubinstein

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0566-2209
  13. Michele Vendruscolo

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3616-1610
  14. Daniel Durocher

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    For correspondence
    durocher@lunenfeld.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3863-8635
  15. Lewis E Kay

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    For correspondence
    kay@pound.med.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4054-4083

Funding

Canadian Institutes of Health Research (RN203972 - 310401)

  • Lewis E Kay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ivan Dikic, Goethe University School of Medicine, Germany

Publication history

  1. Received: December 2, 2016
  2. Accepted: April 12, 2017
  3. Accepted Manuscript published: April 13, 2017 (version 1)
  4. Version of Record published: May 11, 2017 (version 2)

Copyright

© 2017, Kitevski-LeBlanc et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,362
    Page views
  • 797
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Carolina Franco Nitta et al.
    Research Article

    Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation – arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.

    1. Structural Biology and Molecular Biophysics
    Shan Zhou et al.
    Research Article

    Pathogenic mycobacteria pose a sustained threat to global human health. Recently, cytochrome bcc complexes have gained interest as targets for antibiotic drug development. However, there is currently no structural information for the cytochrome bcc complex from these pathogenic mycobacteria. Here, we report the structures of Mycobacterium tuberculosis cytochrome bcc alone (2.68 Å resolution) and in complex with clinical drug candidates Q203 (2.67 Å resolution) and TB47 (2.93 Å resolution) determined by single-particle cryo-electron microscopy. M. tuberculosis cytochrome bcc forms a dimeric assembly with endogenous menaquinone/menaquinol bound at the quinone/quinol-binding pockets. We observe Q203 and TB47 bound at the quinol-binding site and stabilized by hydrogen bonds with the side chains of QcrBThr313 and QcrBGlu314, residues that are conserved across pathogenic mycobacteria. These high-resolution images provide a basis for the design of new mycobacterial cytochrome bcc inhibitors that could be developed into broad-spectrum drugs to treat mycobacterial infections.