The RNF168 paralog RNF169 defines a new class of ubiquitylated-histone reader involved in the response to DNA damage

  1. Julianne Kitevski-LeBlanc
  2. Amélie Fradet-Turcotte
  3. Predrag Kukic
  4. Marcus D Wilson
  5. Guillem Portella
  6. Tairan Yuwen
  7. Stephanie Panier
  8. Shili Duan
  9. Marella D Canny
  10. Hugo van Ingen
  11. Cheryl H Arrowsmith
  12. John L Rubinstein
  13. Michele Vendruscolo
  14. Daniel Durocher  Is a corresponding author
  15. Lewis E Kay  Is a corresponding author
  1. University of Toronto, Canada
  2. Mount Sinai Hospital, Canada
  3. University of Cambridge, United Kingdom
  4. The Francis Crick Research Institute, United Kingdom
  5. Leiden University, Netherlands

Abstract

Site-specific histone ubiquitylation plays a central role in orchestrating the response to DNA double-strand breaks (DSBs). DSBs elicit a cascade of events controlled by the ubiquitin ligase RNF168, which promotes the accumulation of repair factors such as 53BP1 and BRCA1 on the chromatin flanking the break site. RNF168 also promotes its own accumulation, and that of its paralog RNF169, but how they recognize ubiquitylated chromatin is unknown. Using methyl-TROSY solution NMR spectroscopy and molecular dynamics simulations, we present an atomic resolution model of human RNF169 binding to a ubiquitylated nucleosome, and validate it by electron cryomicroscopy. We establish that RNF169 binds to ubiquitylated H2A-Lys13/Lys15 in a manner that involves its canonical ubiquitin-binding helix and a pair of arginine-rich motifs that interact with the nucleosome acidic patch. This three-pronged interaction mechanism is distinct from that by which 53BP1 binds to ubiquitylated H2A-Lys15 highlighting the diversity in site-specific recognition of ubiquitylated nucleosomes.

Article and author information

Author details

  1. Julianne Kitevski-LeBlanc

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Amélie Fradet-Turcotte

    The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Predrag Kukic

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Marcus D Wilson

    The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9551-5514
  5. Guillem Portella

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Tairan Yuwen

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3504-7995
  7. Stephanie Panier

    The Francis Crick Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Shili Duan

    Structural Genomics Consortium, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Marella D Canny

    Department of Medical Biophysics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Hugo van Ingen

    Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Cheryl H Arrowsmith

    Department of Medical Biophysics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. John L Rubinstein

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0566-2209
  13. Michele Vendruscolo

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3616-1610
  14. Daniel Durocher

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    For correspondence
    durocher@lunenfeld.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3863-8635
  15. Lewis E Kay

    Department of Molecular Genetics, University of Toronto, Toronto, Canada
    For correspondence
    kay@pound.med.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4054-4083

Funding

Canadian Institutes of Health Research (RN203972 - 310401)

  • Lewis E Kay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ivan Dikic, Goethe University School of Medicine, Germany

Version history

  1. Received: December 2, 2016
  2. Accepted: April 12, 2017
  3. Accepted Manuscript published: April 13, 2017 (version 1)
  4. Version of Record published: May 11, 2017 (version 2)

Copyright

© 2017, Kitevski-LeBlanc et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,801
    views
  • 860
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julianne Kitevski-LeBlanc
  2. Amélie Fradet-Turcotte
  3. Predrag Kukic
  4. Marcus D Wilson
  5. Guillem Portella
  6. Tairan Yuwen
  7. Stephanie Panier
  8. Shili Duan
  9. Marella D Canny
  10. Hugo van Ingen
  11. Cheryl H Arrowsmith
  12. John L Rubinstein
  13. Michele Vendruscolo
  14. Daniel Durocher
  15. Lewis E Kay
(2017)
The RNF168 paralog RNF169 defines a new class of ubiquitylated-histone reader involved in the response to DNA damage
eLife 6:e23872.
https://doi.org/10.7554/eLife.23872

Share this article

https://doi.org/10.7554/eLife.23872

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.