Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate

  1. Chungang Feng
  2. Mats Pettersson
  3. Sangeet Lamichhaney
  4. Carl-Johan Rubin
  5. Nima Rafati
  6. Michele Casini
  7. Arild Folkvord
  8. Leif Andersson  Is a corresponding author
  1. Uppsala University, Sweden
  2. Swedish University of Agricultural Sciences, Sweden
  3. University of Bergen, Norway

Abstract

The Atlantic herring is one of the most abundant vertebrates on earth but its nucleotide diversity is moderate (π=0.3%), only three-fold higher than in human. Here, we present a pedigree-based estimation of the mutation rate in this species. Based on whole-genome sequencing of four parents and 12 offspring, the estimated mutation rate is 2.0 x 10-9 per base per generation. We observed a high degree of parental mosaicism indicating that a large fraction of these de novo mutations occurred during early germ cell development. The estimated mutation rate - the lowest among vertebrates analyzed to date - partially explains the discrepancy between the rather low nucleotide diversity in herring and its huge census population size. But a species like the herring will never reach its expected nucleotide diversity because of fluctuations in population size over the millions of years it takes to build up high nucleotide diversity.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Chungang Feng

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Mats Pettersson

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Sangeet Lamichhaney

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Carl-Johan Rubin

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Nima Rafati

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Michele Casini

    Department of Aquatic Resources, Swedish University of Agricultural Sciences, Lysekil, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Arild Folkvord

    Department of Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  8. Leif Andersson

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    For correspondence
    leif.andersson@imbim.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4085-6968

Funding

European Research Council (Bateson)

  • Leif Andersson

Norwegian Research Council (254774)

  • Arild Folkvord
  • Leif Andersson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,400
    views
  • 358
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chungang Feng
  2. Mats Pettersson
  3. Sangeet Lamichhaney
  4. Carl-Johan Rubin
  5. Nima Rafati
  6. Michele Casini
  7. Arild Folkvord
  8. Leif Andersson
(2017)
Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate
eLife 6:e23907.
https://doi.org/10.7554/eLife.23907

Share this article

https://doi.org/10.7554/eLife.23907

Further reading

    1. Evolutionary Biology
    Lin Chao, Chun Kuen Chan ... Ulla Camilla Rang
    Research Article

    Lineages of rod-shaped bacteria such as Escherichia coli exhibit a temporal decline in elongation rate in a manner comparable to cellular or biological aging. The effect results from the production of asymmetrical daughters, one with a lower elongation rate, by the division of a mother cell. The slower daughter compared to the faster daughter, denoted respectively as the old and new daughters, has more aggregates of damaged proteins and fewer expressed gene products. We have examined further the degree of asymmetry by measuring the density of ribosomes between old and new daughters and between their poles. We found that ribosomes were denser in the new daughter and also in the new pole of the daughters. These ribosome patterns match the ones we previously found for expressed gene products. This outcome suggests that the asymmetry is not likely to result from properties unique to the gene expressed in our previous study, but rather from a more fundamental upstream process affecting the distribution of ribosomal abundance. Because damage aggregates and ribosomes are both more abundant at the poles of E. coli cells, we suggest that competition for space between the two could explain the reduced ribosomal density in old daughters. Using published values for aggregate sizes and the relationship between ribosomal number and elongation rates, we show that the aggregate volumes could in principle displace quantitatively the amount of ribosomes needed to reduce the elongation rate of the old daughters.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Michael James Chambers, Sophia B Scobell, Meru J Sadhu
    Research Article

    Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued.  However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.