Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate

  1. Chungang Feng
  2. Mats Pettersson
  3. Sangeet Lamichhaney
  4. Carl-Johan Rubin
  5. Nima Rafati
  6. Michele Casini
  7. Arild Folkvord
  8. Leif Andersson  Is a corresponding author
  1. Uppsala University, Sweden
  2. Swedish University of Agricultural Sciences, Sweden
  3. University of Bergen, Norway

Abstract

The Atlantic herring is one of the most abundant vertebrates on earth but its nucleotide diversity is moderate (π=0.3%), only three-fold higher than in human. Here, we present a pedigree-based estimation of the mutation rate in this species. Based on whole-genome sequencing of four parents and 12 offspring, the estimated mutation rate is 2.0 x 10-9 per base per generation. We observed a high degree of parental mosaicism indicating that a large fraction of these de novo mutations occurred during early germ cell development. The estimated mutation rate - the lowest among vertebrates analyzed to date - partially explains the discrepancy between the rather low nucleotide diversity in herring and its huge census population size. But a species like the herring will never reach its expected nucleotide diversity because of fluctuations in population size over the millions of years it takes to build up high nucleotide diversity.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Chungang Feng

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Mats Pettersson

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Sangeet Lamichhaney

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Carl-Johan Rubin

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Nima Rafati

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Michele Casini

    Department of Aquatic Resources, Swedish University of Agricultural Sciences, Lysekil, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Arild Folkvord

    Department of Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  8. Leif Andersson

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    For correspondence
    leif.andersson@imbim.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4085-6968

Funding

European Research Council (Bateson)

  • Leif Andersson

Norwegian Research Council (254774)

  • Arild Folkvord
  • Leif Andersson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,447
    views
  • 359
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chungang Feng
  2. Mats Pettersson
  3. Sangeet Lamichhaney
  4. Carl-Johan Rubin
  5. Nima Rafati
  6. Michele Casini
  7. Arild Folkvord
  8. Leif Andersson
(2017)
Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate
eLife 6:e23907.
https://doi.org/10.7554/eLife.23907

Share this article

https://doi.org/10.7554/eLife.23907

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.