Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate

  1. Chungang Feng
  2. Mats Pettersson
  3. Sangeet Lamichhaney
  4. Carl-Johan Rubin
  5. Nima Rafati
  6. Michele Casini
  7. Arild Folkvord
  8. Leif Andersson  Is a corresponding author
  1. Uppsala University, Sweden
  2. Swedish University of Agricultural Sciences, Sweden
  3. University of Bergen, Norway

Abstract

The Atlantic herring is one of the most abundant vertebrates on earth but its nucleotide diversity is moderate (π=0.3%), only three-fold higher than in human. Here, we present a pedigree-based estimation of the mutation rate in this species. Based on whole-genome sequencing of four parents and 12 offspring, the estimated mutation rate is 2.0 x 10-9 per base per generation. We observed a high degree of parental mosaicism indicating that a large fraction of these de novo mutations occurred during early germ cell development. The estimated mutation rate - the lowest among vertebrates analyzed to date - partially explains the discrepancy between the rather low nucleotide diversity in herring and its huge census population size. But a species like the herring will never reach its expected nucleotide diversity because of fluctuations in population size over the millions of years it takes to build up high nucleotide diversity.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Chungang Feng

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Mats Pettersson

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Sangeet Lamichhaney

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Carl-Johan Rubin

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Nima Rafati

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Michele Casini

    Department of Aquatic Resources, Swedish University of Agricultural Sciences, Lysekil, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Arild Folkvord

    Department of Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  8. Leif Andersson

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    For correspondence
    leif.andersson@imbim.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4085-6968

Funding

European Research Council (Bateson)

  • Leif Andersson

Norwegian Research Council (254774)

  • Arild Folkvord
  • Leif Andersson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,393
    views
  • 358
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chungang Feng
  2. Mats Pettersson
  3. Sangeet Lamichhaney
  4. Carl-Johan Rubin
  5. Nima Rafati
  6. Michele Casini
  7. Arild Folkvord
  8. Leif Andersson
(2017)
Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate
eLife 6:e23907.
https://doi.org/10.7554/eLife.23907

Share this article

https://doi.org/10.7554/eLife.23907

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Giulia Ferraretti, Paolo Abondio ... Marco Sazzini
    Research Article

    It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.

    1. Ecology
    2. Evolutionary Biology
    Zhixian Zhang, Jianying Li ... Songdou Zhang
    Research Article

    Seasonal polyphenism enables organisms to adapt to environmental challenges by increasing phenotypic diversity. Cacopsylla chinensis exhibits remarkable seasonal polyphenism, specifically in the form of summer-form and winter-form, which have distinct morphological phenotypes. Previous research has shown that low temperature and the temperature receptor CcTRPM regulate the transition from summer-form to winter-form in C. chinensis by impacting cuticle content and thickness. However, the underling neuroendocrine regulatory mechanism remains largely unknown. Bursicon, also known as the tanning hormone, is responsible for the hardening and darkening of the insect cuticle. In this study, we report for the first time on the novel function of Bursicon and its receptor in the transition from summer-form to winter-form in C. chinensis. Firstly, we identified CcBurs-α and CcBurs-β as two typical subunits of Bursicon in C. chinensis, which were regulated by low temperature (10 °C) and CcTRPM. Subsequently, CcBurs-α and CcBurs-β formed a heterodimer that mediated the transition from summer-form to winter-form by influencing the cuticle chitin contents and cuticle thickness. Furthermore, we demonstrated that CcBurs-R acts as the Bursicon receptor and plays a critical role in the up-stream signaling of the chitin biosynthesis pathway, regulating the transition from summer-form to winter-form. Finally, we discovered that miR-6012 directly targets CcBurs-R, contributing to the regulation of Bursicon signaling in the seasonal polyphenism of C. chinensis. In summary, these findings reveal the novel function of the neuroendocrine regulatory mechanism underlying seasonal polyphenism and provide critical insights into the insect Bursicon and its receptor.