Single-molecule visualization of fast polymerase turnover in the bacterial replisome

  1. Jacob S Lewis
  2. Lisanne M Spenkelink
  3. Slobodan Jergic
  4. Elizabeth A Wood
  5. Enrico Monachino
  6. Nicholas P Horan
  7. Karl E Duderstadt
  8. Michael M Cox
  9. Andrew Robinson
  10. Nicholas E Dixon  Is a corresponding author
  11. Antoine M van Oijen  Is a corresponding author
  1. University of Wollongong, Australia
  2. University of Wisconsin-Madison, United States
  3. University of Groningen, Netherlands

Abstract

The Escherichia coli DNA replication machinery has been used as a road map to uncover design rules that enable DNA duplication with high efficiency and fidelity. Although the enzymatic activities of the replicative DNA Pol III are well understood, its dynamics within the replisome are not. Here we test the accepted view that the Pol III holoenzyme remains stably associated within the replisome. We use in vitro single-molecule assays with fluorescently labeled polymerases to demonstrate that the Pol III* complex (holoenzyme lacking the β2 sliding clamp), is rapidly exchanged during processive DNA replication. Nevertheless, the replisome is highly resistant to dilution in the absence of Pol III* in solution. We further show similar exchange in live cells containing labeled clamp loader and polymerase. These observations suggest a concentration-dependent exchange mechanism providing a balance between stability and plasticity, facilitating replacement of replisomal components dependent on their availability in the environment.

Article and author information

Author details

  1. Jacob S Lewis

    Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    No competing interests declared.
  2. Lisanne M Spenkelink

    Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    No competing interests declared.
  3. Slobodan Jergic

    Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    No competing interests declared.
  4. Elizabeth A Wood

    Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, United States
    Competing interests
    No competing interests declared.
  5. Enrico Monachino

    Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    No competing interests declared.
  6. Nicholas P Horan

    Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    No competing interests declared.
  7. Karl E Duderstadt

    Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  8. Michael M Cox

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  9. Andrew Robinson

    Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    No competing interests declared.
  10. Nicholas E Dixon

    Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    For correspondence
    nickd@uow.edu.au
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5958-6945
  11. Antoine M van Oijen

    Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    For correspondence
    vanoijen@uow.edu.au
    Competing interests
    Antoine M van Oijen, Reviewing editor, <i>eLife</i>.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1794-5161

Funding

Australian Research Council (DP150100956)

  • Nicholas E Dixon
  • Antoine M van Oijen

Australian Research Council (FL140100027)

  • Antoine M van Oijen

National Institute of Health (GM32335)

  • Michael M Cox

Fundamenteel onderzoek der materie (12CMCE03)

  • Lisanne M Spenkelink

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Lewis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,514
    views
  • 743
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jacob S Lewis
  2. Lisanne M Spenkelink
  3. Slobodan Jergic
  4. Elizabeth A Wood
  5. Enrico Monachino
  6. Nicholas P Horan
  7. Karl E Duderstadt
  8. Michael M Cox
  9. Andrew Robinson
  10. Nicholas E Dixon
  11. Antoine M van Oijen
(2017)
Single-molecule visualization of fast polymerase turnover in the bacterial replisome
eLife 6:e23932.
https://doi.org/10.7554/eLife.23932

Share this article

https://doi.org/10.7554/eLife.23932

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Elise S Bruguera, Jacob P Mahoney, William I Weis
    Research Article

    Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin. Unlike Wnt, the cystine knot ligand Norrin only signals through Fzd4 and additionally requires the co-receptor Tetraspanin12 (Tspan12); however, the mechanism underlying Tspan12-mediated signal enhancement is unclear. It has been proposed that Tspan12 integrates into the Norrin-Fzd4 complex to enhance Norrin-Fzd4 affinity or otherwise allosterically modulate Fzd4 signaling. Here, we measure direct, high-affinity binding between purified Norrin and Tspan12 in a lipid environment and use AlphaFold models to interrogate this interaction interface. We find that Tspan12 and Fzd4 can simultaneously bind Norrin and that a pre-formed Tspan12/Fzd4 heterodimer, as well as cells co-expressing Tspan12 and Fzd4, more efficiently capture low concentrations of Norrin than Fzd4 alone. We also show that Tspan12 competes with both heparan sulfate proteoglycans and LRP6 for Norrin binding and that Tspan12 does not impact Fzd4-Dvl affinity in the presence or absence of Norrin. Our findings suggest that Tspan12 does not allosterically enhance Fzd4 binding to Norrin or Dvl, but instead functions to directly capture Norrin upstream of signaling.

    1. Structural Biology and Molecular Biophysics
    Laura-Marie Silbermann, Benjamin Vermeer ... Katarzyna Tych
    Review Article

    Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of ‘clients’ (substrates). After decades of research, several ‘known unknowns’ about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.