The Murine Catecholamine Methyltransferase mTOMT is Essential for Mechanotransduction by Cochlear Hair Cells

  1. Christopher L Cunningham
  2. Zizhen Wu
  3. Aria Jafari
  4. Bo Zhao
  5. Kat Schrode
  6. Sarah Harkins-Perry
  7. Amanda Lauer
  8. Ulrich Mueller  Is a corresponding author
  1. Johns Hopkins University, United States
  2. UCSD, United States
  3. Indiana University School of Medicine, United States
  4. TSRI, United States

Abstract

Hair cells of the cochlea are mechanosensors for the perception of sound. Mutations in the LRTOMT gene, which encodes a protein with homology to the catecholamine methyltransferase COMT that is linked to schizophrenia, cause deafness. Here we show that Tomt/Comt2, the murine ortholog of LRTOMT, has an unexpected function in the regulation of mechanotransduction by hair cells. The role of mTOMT in hair cells is independent of mTOMT methyltransferase function and mCOMT cannot substitute for mTOMT function. Instead, mTOMT binds to putative components of the mechanotransduction channel in hair cells and is essential for the transport of some of these components into the mechanically sensitive stereocilia of hair cells. Our studies thus suggest functional diversification between mCOMT and mTOMT, where mTOMT is critical for the assembly of the mechanotransduction machinery of hair cells. Defects in this process are likely mechanistically linked to deafness caused by mutations in LRTOMT/Tomt.

Article and author information

Author details

  1. Christopher L Cunningham

    Neuroscience, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Zizhen Wu

    Neuroscience, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Aria Jafari

    Otolaryngology, UCSD, San Diego, United States
    Competing interests
    No competing interests declared.
  4. Bo Zhao

    Department of Otolaryngology Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, United States
    Competing interests
    No competing interests declared.
  5. Kat Schrode

    Otolaryngology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  6. Sarah Harkins-Perry

    Cell Biology, TSRI, San Diego, United States
    Competing interests
    No competing interests declared.
  7. Amanda Lauer

    Otolaryngology-HNS, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4184-7374
  8. Ulrich Mueller

    Neuroscience, Johns Hopkins University, Baltimore, United States
    For correspondence
    umuelle3@jhmi.edu
    Competing interests
    Ulrich Mueller, Ulrich Mueller is a founder of Decibel Therapeutics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2736-6494

Funding

National Institute on Deafness and Other Communication Disorders (5965)

  • Ulrich Mueller

National Institute on Deafness and Other Communication Disorders (7704)

  • Ulrich Mueller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Care and Use Committee at Johns Hopkins University School of Medicine (#M016M271).

Copyright

© 2017, Cunningham et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,312
    views
  • 453
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher L Cunningham
  2. Zizhen Wu
  3. Aria Jafari
  4. Bo Zhao
  5. Kat Schrode
  6. Sarah Harkins-Perry
  7. Amanda Lauer
  8. Ulrich Mueller
(2017)
The Murine Catecholamine Methyltransferase mTOMT is Essential for Mechanotransduction by Cochlear Hair Cells
eLife 6:e24318.
https://doi.org/10.7554/eLife.24318

Share this article

https://doi.org/10.7554/eLife.24318

Further reading

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.