EM connectomics reveals axonal target variation in a sequence-generating network

  1. Jörgen Kornfeld
  2. Sam E Benezra
  3. Rajeevan T Narayanan
  4. Fabian Svara
  5. Robert Egger
  6. Marcel Oberlaender
  7. Winfried Denk
  8. Michael A Long  Is a corresponding author
  1. Max Planck Institute of Neurobiology, Germany
  2. New York University Langone Medical Center, United States
  3. Max Planck Institute for Biological Cybernetics, Germany

Abstract

The sequential activation of neurons has been observed in various areas of the brain, but in no case is the underlying network structure well understood. Here we examined the circuit anatomy of zebra finch HVC, a cortical region that generates sequences underlying the temporal progression of the song. We combined serial block-face electron microscopy with light microscopy to determine the cell types targeted by HVC(RA) neurons, which control song timing. Close to their soma, axons almost exclusively targeted inhibitory interneurons, consistent with what had been found with electrical recordings from pairs of cells. Conversely, far from the soma the targets were mostly other excitatory neurons, about half of these being other HVC(RA) cells. Both observations are consistent with the notion that the neural sequences that pace the song are generated by global synaptic chains in HVC embedded within local inhibitory networks.

Article and author information

Author details

  1. Jörgen Kornfeld

    Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sam E Benezra

    NYU Neuroscience Institute, New York University Langone Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rajeevan T Narayanan

    Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabian Svara

    Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert Egger

    NYU Neuroscience Institute, New York University Langone Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Marcel Oberlaender

    Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Winfried Denk

    Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0704-6998
  8. Michael A Long

    NYU Neuroscience Institute, New York University Langone Medical Center, New York, United States
    For correspondence
    mlong@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9283-3741

Funding

National Institutes of Health (R01NS075044)

  • Michael A Long

New York Stem Cell Foundation (NYSCF-R-NI18)

  • Michael A Long

Rita Allen Foundation (Rita Allen)

  • Michael A Long

Max Planck Society (Max Planck)

  • Jörgen Kornfeld
  • Rajeevan T Narayanan
  • Fabian Svara
  • Marcel Oberlaender
  • Winfried Denk

Bernstein Center for Computational Neuroscience Tübingen

  • Rajeevan T Narayanan
  • Marcel Oberlaender

Boehringer Ingelheim Fonds

  • Jörgen Kornfeld
  • Fabian Svara

European Research Council (633428)

  • Rajeevan T Narayanan
  • Marcel Oberlaender

German Federal Ministry of Education and Research Grant

  • Rajeevan T Narayanan
  • Marcel Oberlaender

European Union's Horizon 2020

  • Rajeevan T Narayanan
  • Marcel Oberlaender

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the New York University Medical Center.Our songbird protocol, entitled 'Understanding birdsong circuitry', was recently renewed. The protocol number is 161102-01.

Copyright

© 2017, Kornfeld et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,512
    views
  • 712
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jörgen Kornfeld
  2. Sam E Benezra
  3. Rajeevan T Narayanan
  4. Fabian Svara
  5. Robert Egger
  6. Marcel Oberlaender
  7. Winfried Denk
  8. Michael A Long
(2017)
EM connectomics reveals axonal target variation in a sequence-generating network
eLife 6:e24364.
https://doi.org/10.7554/eLife.24364

Share this article

https://doi.org/10.7554/eLife.24364

Further reading

    1. Neuroscience
    Cuong Pham, Yuji Komaki ... Dongdong Li
    Research Article

    Brain water homeostasis not only provides a physical protection, but also determines the diffusion of chemical molecules key for information processing and metabolic stability. As a major type of glia in brain parenchyma, astrocytes are the dominant cell type expressing aquaporin water channel. How astrocyte aquaporin contributes to brain water homeostasis in basal physiology remains to be understood. We report that astrocyte aquaporin 4 (AQP4) mediates a tonic water efflux in basal conditions. Acute inhibition of astrocyte AQP4 leads to intracellular water accumulation as optically resolved by fluorescence-translated imaging in acute brain slices, and in vivo by fiber photometry in mobile mice. We then show that aquaporin-mediated constant water efflux maintains astrocyte volume and osmotic equilibrium, astrocyte and neuron Ca2+ signaling, and extracellular space remodeling during optogenetically induced cortical spreading depression. Using diffusion-weighted magnetic resonance imaging (DW-MRI), we observed that in vivo inhibition of AQP4 water efflux heterogeneously disturbs brain water homeostasis in a region-dependent manner. Our data suggest that astrocyte aquaporin, though bidirectional in nature, mediates a tonic water outflow to sustain cellular and environmental equilibrium in brain parenchyma.

    1. Neuroscience
    Chad Heer, Mark Sheffield
    Research Article

    Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently, it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized two-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals’ running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal’s transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.