EM connectomics reveals axonal target variation in a sequence-generating network

  1. Jörgen Kornfeld
  2. Sam E Benezra
  3. Rajeevan T Narayanan
  4. Fabian Svara
  5. Robert Egger
  6. Marcel Oberlaender
  7. Winfried Denk
  8. Michael A Long  Is a corresponding author
  1. Max Planck Institute of Neurobiology, Germany
  2. New York University Langone Medical Center, United States
  3. Max Planck Institute for Biological Cybernetics, Germany

Abstract

The sequential activation of neurons has been observed in various areas of the brain, but in no case is the underlying network structure well understood. Here we examined the circuit anatomy of zebra finch HVC, a cortical region that generates sequences underlying the temporal progression of the song. We combined serial block-face electron microscopy with light microscopy to determine the cell types targeted by HVC(RA) neurons, which control song timing. Close to their soma, axons almost exclusively targeted inhibitory interneurons, consistent with what had been found with electrical recordings from pairs of cells. Conversely, far from the soma the targets were mostly other excitatory neurons, about half of these being other HVC(RA) cells. Both observations are consistent with the notion that the neural sequences that pace the song are generated by global synaptic chains in HVC embedded within local inhibitory networks.

Article and author information

Author details

  1. Jörgen Kornfeld

    Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sam E Benezra

    NYU Neuroscience Institute, New York University Langone Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rajeevan T Narayanan

    Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabian Svara

    Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert Egger

    NYU Neuroscience Institute, New York University Langone Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Marcel Oberlaender

    Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Winfried Denk

    Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0704-6998
  8. Michael A Long

    NYU Neuroscience Institute, New York University Langone Medical Center, New York, United States
    For correspondence
    mlong@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9283-3741

Funding

National Institutes of Health (R01NS075044)

  • Michael A Long

New York Stem Cell Foundation (NYSCF-R-NI18)

  • Michael A Long

Rita Allen Foundation (Rita Allen)

  • Michael A Long

Max Planck Society (Max Planck)

  • Jörgen Kornfeld
  • Rajeevan T Narayanan
  • Fabian Svara
  • Marcel Oberlaender
  • Winfried Denk

Bernstein Center for Computational Neuroscience Tübingen

  • Rajeevan T Narayanan
  • Marcel Oberlaender

Boehringer Ingelheim Fonds

  • Jörgen Kornfeld
  • Fabian Svara

European Research Council (633428)

  • Rajeevan T Narayanan
  • Marcel Oberlaender

German Federal Ministry of Education and Research Grant

  • Rajeevan T Narayanan
  • Marcel Oberlaender

European Union's Horizon 2020

  • Rajeevan T Narayanan
  • Marcel Oberlaender

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the New York University Medical Center.Our songbird protocol, entitled 'Understanding birdsong circuitry', was recently renewed. The protocol number is 161102-01.

Copyright

© 2017, Kornfeld et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,632
    views
  • 724
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jörgen Kornfeld
  2. Sam E Benezra
  3. Rajeevan T Narayanan
  4. Fabian Svara
  5. Robert Egger
  6. Marcel Oberlaender
  7. Winfried Denk
  8. Michael A Long
(2017)
EM connectomics reveals axonal target variation in a sequence-generating network
eLife 6:e24364.
https://doi.org/10.7554/eLife.24364

Share this article

https://doi.org/10.7554/eLife.24364

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Jenny Chen, Phoebe R Richardson ... Hopi E Hoekstra
    Research Article

    Genetic variation is known to contribute to the variation of animal social behavior, but the molecular mechanisms that lead to behavioral differences are still not fully understood. Here, we investigate the cellular evolution of the hypothalamic preoptic area (POA), a brain region that plays a critical role in social behavior, across two sister species of deer mice (Peromyscus maniculatus and P. polionotus) with divergent social systems. These two species exhibit large differences in mating and parental care behavior across species and sex. Using single-nucleus RNA-sequencing, we build a cellular atlas of the POA for males and females of both Peromyscus species. We identify four cell types that are differentially abundant across species, two of which may account for species differences in parental care behavior based on known functions of these cell types. Our data further implicate two sex-biased cell types to be important for the evolution of sex-specific behavior. Finally, we show a remarkable reduction of sex-biased gene expression in P. polionotus, a monogamous species that also exhibits reduced sexual dimorphism in parental care behavior. Our POA atlas is a powerful resource to investigate how molecular neuronal traits may be evolving to give rise to innate differences in social behavior across animal species.

    1. Neuroscience
    Julieta Gomez-Frittelli, Gabrielle Frederique Devienne ... Julia A Kaltschmidt
    Research Article

    Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here, we investigated synaptic cell adhesion molecules as novel cell-type markers in the ENS. Our work identifies two type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and IH current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current IH disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.