EM connectomics reveals axonal target variation in a sequence-generating network

  1. Jörgen Kornfeld
  2. Sam E Benezra
  3. Rajeevan T Narayanan
  4. Fabian Svara
  5. Robert Egger
  6. Marcel Oberlaender
  7. Winfried Denk
  8. Michael A Long  Is a corresponding author
  1. Max Planck Institute of Neurobiology, Germany
  2. New York University Langone Medical Center, United States
  3. Max Planck Institute for Biological Cybernetics, Germany

Abstract

The sequential activation of neurons has been observed in various areas of the brain, but in no case is the underlying network structure well understood. Here we examined the circuit anatomy of zebra finch HVC, a cortical region that generates sequences underlying the temporal progression of the song. We combined serial block-face electron microscopy with light microscopy to determine the cell types targeted by HVC(RA) neurons, which control song timing. Close to their soma, axons almost exclusively targeted inhibitory interneurons, consistent with what had been found with electrical recordings from pairs of cells. Conversely, far from the soma the targets were mostly other excitatory neurons, about half of these being other HVC(RA) cells. Both observations are consistent with the notion that the neural sequences that pace the song are generated by global synaptic chains in HVC embedded within local inhibitory networks.

Article and author information

Author details

  1. Jörgen Kornfeld

    Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sam E Benezra

    NYU Neuroscience Institute, New York University Langone Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rajeevan T Narayanan

    Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabian Svara

    Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert Egger

    NYU Neuroscience Institute, New York University Langone Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Marcel Oberlaender

    Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Winfried Denk

    Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0704-6998
  8. Michael A Long

    NYU Neuroscience Institute, New York University Langone Medical Center, New York, United States
    For correspondence
    mlong@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9283-3741

Funding

National Institutes of Health (R01NS075044)

  • Michael A Long

New York Stem Cell Foundation (NYSCF-R-NI18)

  • Michael A Long

Rita Allen Foundation (Rita Allen)

  • Michael A Long

Max Planck Society (Max Planck)

  • Jörgen Kornfeld
  • Rajeevan T Narayanan
  • Fabian Svara
  • Marcel Oberlaender
  • Winfried Denk

Bernstein Center for Computational Neuroscience Tübingen

  • Rajeevan T Narayanan
  • Marcel Oberlaender

Boehringer Ingelheim Fonds

  • Jörgen Kornfeld
  • Fabian Svara

European Research Council (633428)

  • Rajeevan T Narayanan
  • Marcel Oberlaender

German Federal Ministry of Education and Research Grant

  • Rajeevan T Narayanan
  • Marcel Oberlaender

European Union's Horizon 2020

  • Rajeevan T Narayanan
  • Marcel Oberlaender

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the New York University Medical Center.Our songbird protocol, entitled 'Understanding birdsong circuitry', was recently renewed. The protocol number is 161102-01.

Reviewing Editor

  1. Karel Svoboda, Janelia Research Campus, Howard Hughes Medical Institute, United States

Version history

  1. Received: December 17, 2016
  2. Accepted: March 23, 2017
  3. Accepted Manuscript published: March 27, 2017 (version 1)
  4. Version of Record published: April 21, 2017 (version 2)

Copyright

© 2017, Kornfeld et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,318
    Page views
  • 686
    Downloads
  • 49
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jörgen Kornfeld
  2. Sam E Benezra
  3. Rajeevan T Narayanan
  4. Fabian Svara
  5. Robert Egger
  6. Marcel Oberlaender
  7. Winfried Denk
  8. Michael A Long
(2017)
EM connectomics reveals axonal target variation in a sequence-generating network
eLife 6:e24364.
https://doi.org/10.7554/eLife.24364

Share this article

https://doi.org/10.7554/eLife.24364

Further reading

    1. Neuroscience
    Maureen van der Grinten, Jaap de Ruyter van Steveninck ... Yağmur Güçlütürk
    Tools and Resources

    Blindness affects millions of people around the world. A promising solution to restoring a form of vision for some individuals are cortical visual prostheses, which bypass part of the impaired visual pathway by converting camera input to electrical stimulation of the visual system. The artificially induced visual percept (a pattern of localized light flashes, or ‘phosphenes’) has limited resolution, and a great portion of the field’s research is devoted to optimizing the efficacy, efficiency, and practical usefulness of the encoding of visual information. A commonly exploited method is non-invasive functional evaluation in sighted subjects or with computational models by using simulated prosthetic vision (SPV) pipelines. An important challenge in this approach is to balance enhanced perceptual realism, biologically plausibility, and real-time performance in the simulation of cortical prosthetic vision. We present a biologically plausible, PyTorch-based phosphene simulator that can run in real-time and uses differentiable operations to allow for gradient-based computational optimization of phosphene encoding models. The simulator integrates a wide range of clinical results with neurophysiological evidence in humans and non-human primates. The pipeline includes a model of the retinotopic organization and cortical magnification of the visual cortex. Moreover, the quantitative effects of stimulation parameters and temporal dynamics on phosphene characteristics are incorporated. Our results demonstrate the simulator’s suitability for both computational applications such as end-to-end deep learning-based prosthetic vision optimization as well as behavioral experiments. The modular and open-source software provides a flexible simulation framework for computational, clinical, and behavioral neuroscientists working on visual neuroprosthetics.

    1. Neuroscience
    Simon Lui, Ashleigh K Brink, Laura H Corbit
    Research Article

    Extinction is a specific example of learning where a previously reinforced stimulus or response is no longer reinforced, and the previously learned behaviour is no longer necessary and must be modified. Current theories suggest extinction is not the erasure of the original learning but involves new learning that acts to suppress the original behaviour. Evidence for this can be found when the original behaviour recovers following the passage of time (spontaneous recovery) or reintroduction of the reinforcement (i.e. reinstatement). Recent studies have shown that pharmacological manipulation of noradrenaline (NA) or its receptors can influence appetitive extinction; however, the role and source of endogenous NA in these effects are unknown. Here, we examined the role of the locus coeruleus (LC) in appetitive extinction. Specifically, we tested whether optogenetic stimulation of LC neurons during extinction of a food-seeking behaviour would enhance extinction evidenced by reduced spontaneous recovery in future tests. LC stimulation during extinction trials did not change the rate of extinction but did serve to reduce subsequent spontaneous recovery, suggesting that stimulation of the LC can augment reward-related extinction. Optogenetic inhibition of the LC during extinction trials reduced responding during the trials where it was applied, but no long-lasting changes in the retention of extinction were observed. Since not all LC cells expressed halorhodopsin, it is possible that more complete LC inhibition or pathway-specific targeting would be more effective at suppressing extinction learning. These results provide further insight into the neural basis of appetitive extinction, and in particular the role of the LC. A deeper understanding of the physiological bases of extinction can aid development of more effective extinction-based therapies.