1. Neuroscience
Download icon

Emergence of visually-evoked reward expectation signals in dopamine neurons via the superior colliculus in V1 lesioned monkeys

  1. Norihiro Takakuwa
  2. Rikako Kato
  3. Peter Redgrave
  4. Tadashi Isa  Is a corresponding author
  1. National Institute for Physiological Sciences, Japan
  2. University of Sheffield, United Kingdom
Research Article
  • Cited 11
  • Views 2,128
  • Annotations
Cite this article as: eLife 2017;6:e24459 doi: 10.7554/eLife.24459

Abstract

Responses of midbrain dopamine (DA) neurons reflecting expected reward from sensory cues are critical for reward-based associative learning. However, critical pathways by which reward-related visual information is relayed to DA neurons remain unclear. To address this question, we investigated Pavlovian conditioning in macaque monkeys with unilateral primary visual cortex (V1) lesions (an animal model of 'blindsight'). Anticipatory licking responses to obtain juice drops were elicited in response to visual conditioned stimuli (CS) in the affected visual field. Subsequent pharmacological inactivation of the superior colliculus (SC) suppressed the anticipatory licking. Concurrent single unit recordings indicated that DA responses reflecting the reward expectation could be recorded in the absence of V1, and that these responses were also suppressed by SC inactivation. These results indicate that the subcortical visual circuit can relay reward-predicting visual information to DA neurons and integrity of the SC is necessary for visually-elicited classically conditioned responses after V1 lesion.

Article and author information

Author details

  1. Norihiro Takakuwa

    Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Rikako Kato

    Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Peter Redgrave

    Department of Psychology, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Tadashi Isa

    Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan
    For correspondence
    isa.tadashi.7u@kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5652-4688

Funding

Japan Society for the Promotion of Science (KAKENHI Grant Number 22220006)

  • Tadashi Isa

Ministry of Education, Culture, Sports, Science, and Technology (26112008)

  • Tadashi Isa

Japan Society for the Promotion of Science (KAKENHI Grant Number 26221003)

  • Tadashi Isa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All the experimental procedures were performed in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and approved by the Committee for Animal Experiment at the National Institute of Natural Sciences (Permit Number: 16A060).

Reviewing Editor

  1. Naoshige Uchida, Harvard University, United States

Publication history

  1. Received: December 20, 2016
  2. Accepted: June 15, 2017
  3. Accepted Manuscript published: June 19, 2017 (version 1)
  4. Version of Record published: July 26, 2017 (version 2)

Copyright

© 2017, Takakuwa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,128
    Page views
  • 433
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Douglas G Lee, Jean Daunizeau
    Research Article Updated

    Why do we sometimes opt for actions or items that we do not value the most? Under current neurocomputational theories, such preference reversals are typically interpreted in terms of errors that arise from the unreliable signaling of value to brain decision systems. But, an alternative explanation is that people may change their mind because they are reassessing the value of alternative options while pondering the decision. So, why do we carefully ponder some decisions, but not others? In this work, we derive a computational model of the metacognitive control of decisions or MCD. In brief, we assume that fast and automatic processes first provide initial (and largely uncertain) representations of options' values, yielding prior estimates of decision difficulty. These uncertain value representations are then refined by deploying cognitive (e.g., attentional, mnesic) resources, the allocation of which is controlled by an effort-confidence tradeoff. Importantly, the anticipated benefit of allocating resources varies in a decision-by-decision manner according to the prior estimate of decision difficulty. The ensuing MCD model predicts response time, subjective feeling of effort, choice confidence, changes of mind, as well as choice-induced preference change and certainty gain. We test these predictions in a systematic manner, using a dedicated behavioral paradigm. Our results provide a quantitative link between mental effort, choice confidence, and preference reversals, which could inform interpretations of related neuroimaging findings.

    1. Neuroscience
    Rundong Jiang et al.
    Research Article

    The ventral visual pathway is crucially involved in integrating low-level visual features into complex representations for objects and scenes. At an intermediate stage of the ventral visual pathway, V4 plays a crucial role in supporting this transformation. Many V4 neurons are selective for shape segments like curves and corners, however it remains unclear whether these neurons are organized into clustered functional domains, a structural motif common across other visual cortices. Using two-photon calcium imaging in awake macaques, we confirmed and localized cortical domains selective for curves or corners in V4. Single-cell resolution imaging confirmed that curve or corner selective neurons were spatially clustered into such domains. When tested with hexagonal-segment stimuli, we find that stimulus smoothness is the cardinal difference between curve and corner selectivity in V4. Combining cortical population responses with single neuron analysis, our results reveal that curves and corners are encoded by neurons clustered into functional domains in V4. This functionally-specific population architecture bridges the gap between the early and late cortices of the ventral pathway and may serve to facilitate complex object recognition.