A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages

  1. Abigail J Morales
  2. Javier A Carrero
  3. Putzer J Hung
  4. Anthony T Tubbs
  5. Jared M Andrews
  6. Brian T Edelson
  7. Boris Calderon
  8. Cynthia L Innes
  9. Richard S Paules
  10. Jacqueline E Payton
  11. Barry P Sleckman  Is a corresponding author
  1. Weill Cornell Medical College, United States
  2. Washington University School of Medicine, United States
  3. National Institute of Environmental Health Sciences, United States

Abstract

Macrophages produce genotoxic agents, such as reactive oxygen and nitrogen species, that kill invading pathogens. Here we show that these agents activate the DNA damage response (DDR) kinases ATM and DNA-PKcs through the generation of double stranded breaks (DSBs) in murine macrophage genomic DNA. In contrast to other cell types, initiation of this DDR depends on signaling from the type I interferon receptor. Once activated, ATM and DNA-PKcs regulate a genetic program with diverse immune functions and promote inflammasome activation and the production of IL-1β and IL-18. Indeed, following infection with Listeria monocytogenes, DNA-PKcs-deficient murine macrophages produce reduced levels of IL-18 and are unable to optimally stimulate IFN-γ production by NK cells. Thus, genomic DNA DSBs act as signaling intermediates in murine macrophages, regulating innate immune responses through the initiation of a type I IFN-dependent DDR.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Abigail J Morales

    Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Javier A Carrero

    Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Putzer J Hung

    Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anthony T Tubbs

    Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jared M Andrews

    Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brian T Edelson

    Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Boris Calderon

    Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Cynthia L Innes

    Environmental Stress and Cancer Group, National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Richard S Paules

    Environmental Stress and Cancer Group, National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jacqueline E Payton

    Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Barry P Sleckman

    Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    For correspondence
    bas2022@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8295-4462

Funding

National Institute of Allergy and Infectious Diseases (R01 AI047829)

  • Barry P Sleckman

National Institute of Allergy and Infectious Diseases (R01 AI074953)

  • Barry P Sleckman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were bred and maintained under specific pathogen-free conditions at the Washington University School of Medicine and Weill Cornell Medical College under protocol number 2015-0036. Mice were handled in accordance with the guidelines set forth by the Division of Comparative Medicine of Washington University and the Research Animal Research Center at Weill Cornell Medical College.

Copyright

© 2017, Morales et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,298
    views
  • 887
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Abigail J Morales
  2. Javier A Carrero
  3. Putzer J Hung
  4. Anthony T Tubbs
  5. Jared M Andrews
  6. Brian T Edelson
  7. Boris Calderon
  8. Cynthia L Innes
  9. Richard S Paules
  10. Jacqueline E Payton
  11. Barry P Sleckman
(2017)
A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages
eLife 6:e24655.
https://doi.org/10.7554/eLife.24655

Share this article

https://doi.org/10.7554/eLife.24655

Further reading

    1. Immunology and Inflammation
    Hong Yu, Hiroshi Nishio ... Drew Pardoll
    Research Article

    The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.

    1. Immunology and Inflammation
    Takashi Watanabe, Hikaru Hata ... Hidehiro Fukuyama
    Research Article

    Antibodies are powerful tools for the therapy and diagnosis of various diseases. In addition to conventional hybridoma-based screening, recombinant antibody-based screening has become a common choice; however, its application is hampered by two factors: (1) screening starts after Ig gene cloning and recombinant antibody production only, and (2) the antibody is composed of paired chains, heavy and light, commonly expressed by two independent expression vectors. Here, we introduce a method for the rapid screening of recombinant monoclonal antibodies by establishing a Golden Gate-based dual-expression vector and in-vivo expression of membrane-bound antibodies. Using this system, we demonstrate the rapid isolation of influenza cross-reactive antibodies with high affinity from immunized mice within 7 days. This system is particularly useful for isolating therapeutic or diagnostic antibodies, for example during foreseen pandemics.