Multi-neuron intracellular recording in vivo via interacting autopatching robots

  1. Suhasa B Kodandaramaiah
  2. Francisco J Flores
  3. Gregory L Holst
  4. Annabelle C Singer
  5. Xue Han
  6. Emery N Brown
  7. Edward S Boyden  Is a corresponding author
  8. Craig R Forest  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Massachusetts General Hospital, United States
  3. Georgia Institute of Technology, United States
  4. Boston University, United States
  5. University of Minnesota, United States

Abstract

The activities of groups of neurons in a circuit or brain region are important for neuronal computations that contribute to behaviors and disease states. Traditional extracellular recordings have been powerful and scalable, but much less is known about the intracellular processes that lead to spiking activity. We present a robotic system, the multipatcher, capable of automatically obtaining blind whole-cell patch clamp recordings from multiple neurons simultaneously. The multipatcher significantly extends automated patch clamping, or 'autopatching', to guide four interacting electrodes in a coordinated fashion, avoiding mechanical coupling in the brain. We demonstrate its performance in the cortex of anesthetized and awake mice. A multipatcher with four electrodes took an average of 10 min to obtain dual or triple recordings in 29% of trials in anesthetized mice, and in 18% of the trials in awake mice, thus illustrating practical yield and throughput to obtain multiple, simultaneous whole-cell recordings in vivo.

Article and author information

Author details

  1. Suhasa B Kodandaramaiah

    Media Lab, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7767-2644
  2. Francisco J Flores

    Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8974-9717
  3. Gregory L Holst

    G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Annabelle C Singer

    Media Lab, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xue Han

    Department of Biomedical Engineering, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3896-4609
  6. Emery N Brown

    Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Edward S Boyden

    Media Lab, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    esb@media.mit.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Craig R Forest

    Department of Mechanical Engineering, University of Minnesota, Minneapolis, United States
    For correspondence
    cforest@gatech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5343-1769

Funding

New York Stem Cell Foundation

  • Edward S Boyden

McGovern Institute Neurotechnology Fund

  • Suhasa B Kodandaramaiah

National Institutes of Health

  • Gregory L Holst

National Science Foundation

  • Edward S Boyden

National Institutes of Health (R01 EY023173)

  • Craig R Forest

National Institutes of Health (R01-GM104948)

  • Emery N Brown

National Institutes of Health (P01-GM118620)

  • Emery N Brown

Massachusetts General Hospital

  • Emery N Brown

Picower Institue for Learning and Memory

  • Emery N Brown

National Institutes of Health (1R21NS103098-01)

  • Suhasa B Kodandaramaiah

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: We conducted all animal work in accordance to federal, state, and local regulations, and following NIH and AAALAC guidelines and standards. The corresponding protocol (#0113-008-16) was approved by the Institutional Committee on Animal Care at the Massachusetts Institute of Technology.

Copyright

© 2018, Kodandaramaiah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,461
    views
  • 818
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Suhasa B Kodandaramaiah
  2. Francisco J Flores
  3. Gregory L Holst
  4. Annabelle C Singer
  5. Xue Han
  6. Emery N Brown
  7. Edward S Boyden
  8. Craig R Forest
(2018)
Multi-neuron intracellular recording in vivo via interacting autopatching robots
eLife 7:e24656.
https://doi.org/10.7554/eLife.24656

Share this article

https://doi.org/10.7554/eLife.24656

Further reading

    1. Developmental Biology
    2. Neuroscience
    Changtian Ye, Ryan Ho ... James Q Zheng
    Research Article

    Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify sex peptide signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.

    1. Neuroscience
    Iustin V Tabarean
    Research Article

    Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4–5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.