Multi-neuron intracellular recording in vivo via interacting autopatching robots

  1. Suhasa B Kodandaramaiah
  2. Francisco J Flores
  3. Gregory L Holst
  4. Annabelle C Singer
  5. Xue Han
  6. Emery N Brown
  7. Edward S Boyden  Is a corresponding author
  8. Craig R Forest  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Massachusetts General Hospital, United States
  3. Georgia Institute of Technology, United States
  4. Boston University, United States
  5. University of Minnesota, United States

Abstract

The activities of groups of neurons in a circuit or brain region are important for neuronal computations that contribute to behaviors and disease states. Traditional extracellular recordings have been powerful and scalable, but much less is known about the intracellular processes that lead to spiking activity. We present a robotic system, the multipatcher, capable of automatically obtaining blind whole-cell patch clamp recordings from multiple neurons simultaneously. The multipatcher significantly extends automated patch clamping, or 'autopatching', to guide four interacting electrodes in a coordinated fashion, avoiding mechanical coupling in the brain. We demonstrate its performance in the cortex of anesthetized and awake mice. A multipatcher with four electrodes took an average of 10 min to obtain dual or triple recordings in 29% of trials in anesthetized mice, and in 18% of the trials in awake mice, thus illustrating practical yield and throughput to obtain multiple, simultaneous whole-cell recordings in vivo.

Article and author information

Author details

  1. Suhasa B Kodandaramaiah

    Media Lab, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7767-2644
  2. Francisco J Flores

    Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8974-9717
  3. Gregory L Holst

    G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Annabelle C Singer

    Media Lab, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xue Han

    Department of Biomedical Engineering, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3896-4609
  6. Emery N Brown

    Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Edward S Boyden

    Media Lab, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    esb@media.mit.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Craig R Forest

    Department of Mechanical Engineering, University of Minnesota, Minneapolis, United States
    For correspondence
    cforest@gatech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5343-1769

Funding

New York Stem Cell Foundation

  • Edward S Boyden

McGovern Institute Neurotechnology Fund

  • Suhasa B Kodandaramaiah

National Institutes of Health

  • Gregory L Holst

National Science Foundation

  • Edward S Boyden

National Institutes of Health (R01 EY023173)

  • Craig R Forest

National Institutes of Health (R01-GM104948)

  • Emery N Brown

National Institutes of Health (P01-GM118620)

  • Emery N Brown

Massachusetts General Hospital

  • Emery N Brown

Picower Institue for Learning and Memory

  • Emery N Brown

National Institutes of Health (1R21NS103098-01)

  • Suhasa B Kodandaramaiah

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: We conducted all animal work in accordance to federal, state, and local regulations, and following NIH and AAALAC guidelines and standards. The corresponding protocol (#0113-008-16) was approved by the Institutional Committee on Animal Care at the Massachusetts Institute of Technology.

Copyright

© 2018, Kodandaramaiah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,503
    views
  • 823
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Suhasa B Kodandaramaiah
  2. Francisco J Flores
  3. Gregory L Holst
  4. Annabelle C Singer
  5. Xue Han
  6. Emery N Brown
  7. Edward S Boyden
  8. Craig R Forest
(2018)
Multi-neuron intracellular recording in vivo via interacting autopatching robots
eLife 7:e24656.
https://doi.org/10.7554/eLife.24656

Share this article

https://doi.org/10.7554/eLife.24656

Further reading

    1. Neuroscience
    Yevgenia Rosenblum, Mahdad Jafarzadeh Esfahani ... Martin Dresler
    Research Article

    Sleep cycles are defined as episodes of non-rapid eye movement (non-REM) sleep followed by an episode of REM sleep. Fractal or aperiodic neural activity is a well-established marker of arousal and sleep stages measured using electroencephalography. We introduce a new concept of ‘fractal cycles’ of sleep, defined as a time interval during which time series of fractal activity descend to their local minimum and ascend to the next local maximum. We assess correlations between fractal and classical (i.e. non-REM – REM) sleep cycle durations and study cycles with skipped REM sleep. The sample comprised 205 healthy adults, 21 children and adolescents and 111 patients with depression. We found that fractal and classical cycle durations (89±34 vs 90±25 min) correlated positively (r=0.5, p<0.001). Children and adolescents had shorter fractal cycles than young adults (76±34 vs 94±32 min). The fractal cycle algorithm detected cycles with skipped REM sleep in 91–98% of cases. Medicated patients with depression showed longer fractal cycles compared to their unmedicated state (107±51 vs 92±38 min) and age-matched controls (104±49 vs 88±31 min). In conclusion, fractal cycles are an objective, quantifiable, continuous and biologically plausible way to display sleep neural activity and its cycles.

    1. Medicine
    2. Neuroscience
    Gansheng Tan, Anna L Huguenard ... Eric C Leuthardt
    Research Article

    Background:

    Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population. Therefore, this study assessed the impact of both acute and repetitive taVNS on cardiovascular function.

    Methods:

    In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram readings and vital signs. We compared long-term changes in heart rate, heart rate variability (HRV), QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored acute cardiovascular biomarkers in patients exhibiting clinical improvement.

    Results:

    We found that repetitive taVNS did not significantly alter heart rate, QT interval, blood pressure, or intracranial pressure (ICP). However, repetitive taVNS increased overall HRV and parasympathetic activity compared to the sham treatment. The increase in parasympathetic activity was most pronounced from 2 to 4 days after initial treatment (Cohen’s d = 0.50). Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, ICP, or HRV. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than one point in their modified Rankin Score at the time of discharge.

    Conclusions:

    Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment.

    Funding:

    The American Association of Neurological Surgeons (ALH), The Aneurysm and AVM Foundation (ALH), The National Institutes of Health R01-EB026439, P41-EB018783, U24-NS109103, R21-NS128307 (ECL, PB), McDonnell Center for Systems Neuroscience (ECL, PB), and Fondazione Neurone (PB).

    Clinical trial number:

    NCT04557618.