1. Neuroscience
Download icon

Multi-neuron intracellular recording in vivo via interacting autopatching robots

  1. Suhasa B Kodandaramaiah
  2. Francisco J Flores
  3. Gregory L Holst
  4. Annabelle C Singer
  5. Xue Han
  6. Emery N Brown
  7. Edward S Boyden  Is a corresponding author
  8. Craig R Forest  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Massachusetts General Hospital, United States
  3. Georgia Institute of Technology, United States
  4. Boston University, United States
  5. University of Minnesota, United States
Tools and Resources
  • Cited 20
  • Views 5,951
  • Annotations
Cite this article as: eLife 2018;7:e24656 doi: 10.7554/eLife.24656

Abstract

The activities of groups of neurons in a circuit or brain region are important for neuronal computations that contribute to behaviors and disease states. Traditional extracellular recordings have been powerful and scalable, but much less is known about the intracellular processes that lead to spiking activity. We present a robotic system, the multipatcher, capable of automatically obtaining blind whole-cell patch clamp recordings from multiple neurons simultaneously. The multipatcher significantly extends automated patch clamping, or 'autopatching', to guide four interacting electrodes in a coordinated fashion, avoiding mechanical coupling in the brain. We demonstrate its performance in the cortex of anesthetized and awake mice. A multipatcher with four electrodes took an average of 10 min to obtain dual or triple recordings in 29% of trials in anesthetized mice, and in 18% of the trials in awake mice, thus illustrating practical yield and throughput to obtain multiple, simultaneous whole-cell recordings in vivo.

Article and author information

Author details

  1. Suhasa B Kodandaramaiah

    Media Lab, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7767-2644
  2. Francisco J Flores

    Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8974-9717
  3. Gregory L Holst

    G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Annabelle C Singer

    Media Lab, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xue Han

    Department of Biomedical Engineering, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3896-4609
  6. Emery N Brown

    Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Edward S Boyden

    Media Lab, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    esb@media.mit.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Craig R Forest

    Department of Mechanical Engineering, University of Minnesota, Minneapolis, United States
    For correspondence
    cforest@gatech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5343-1769

Funding

New York Stem Cell Foundation

  • Edward S Boyden

McGovern Institute Neurotechnology Fund

  • Suhasa B Kodandaramaiah

National Institutes of Health

  • Gregory L Holst

National Science Foundation

  • Edward S Boyden

National Institutes of Health (R01 EY023173)

  • Craig R Forest

National Institutes of Health (R01-GM104948)

  • Emery N Brown

National Institutes of Health (P01-GM118620)

  • Emery N Brown

Massachusetts General Hospital

  • Emery N Brown

Picower Institue for Learning and Memory

  • Emery N Brown

National Institutes of Health (1R21NS103098-01)

  • Suhasa B Kodandaramaiah

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: We conducted all animal work in accordance to federal, state, and local regulations, and following NIH and AAALAC guidelines and standards. The corresponding protocol (#0113-008-16) was approved by the Institutional Committee on Animal Care at the Massachusetts Institute of Technology.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Publication history

  1. Received: December 24, 2016
  2. Accepted: December 19, 2017
  3. Accepted Manuscript published: January 3, 2018 (version 1)
  4. Version of Record published: February 14, 2018 (version 2)
  5. Version of Record updated: January 16, 2019 (version 3)

Copyright

© 2018, Kodandaramaiah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,951
    Page views
  • 751
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    P Christiaan Klink et al.
    Research Article Updated

    Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake nonhuman primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF models based on the fMRI blood-oxygen-level-dependent (BOLD) signal, multi-unit spiking activity (MUA), and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. fMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF size with increasing eccentricity, as well as a retinotopically specific deactivation of default mode network nodes similar to previous observations in humans.

    1. Developmental Biology
    2. Neuroscience
    Eduardo Loureiro-Campos et al.
    Research Article

    The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a constitutive and heterozygous AP2γ deletion in mice from early postnatal development until adulthood. AP2γ deficiency promotes downregulation of hippocampal glutamatergic neurogenesis, altering the ontogeny of emotional and memory behaviors associated with hippocampus formation. The impairments induced by AP2γ constitutive deletion since early development leads to an anxious-like phenotype and memory impairments as early as the juvenile phase. These behavioral impairments either persist from the juvenile phase to adulthood or emerge in adult mice with deficits in behavioral flexibility and object location recognition. Collectively, we observed a progressive and cumulative impact of constitutive AP2γ deficiency on the hippocampal glutamatergic neurogenic process, as well as alterations on limbic-cortical connectivity, together with functional behavioral impairments. The results herein presented demonstrate the modulatory role exerted by the AP2γ transcription factor and the relevance of hippocampal neurogenesis in the development of emotional states and memory processes.