Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance

  1. Fatih Semerci
  2. William Tin-Shing Choi
  3. Aleksandar Bajic
  4. Aarohi Thakkar
  5. Juan Manuel Encinas
  6. Frederic Depreux
  7. Neil Segil
  8. Andrew K Groves
  9. Mirjana Maletic-Savatic  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, United States
  3. Rosalind Franklin University of Medicine and Science, United States
  4. University of Southern California, United States

Abstract

Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe (Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs, and that Lfng in NSCs along with Notch ligands Delta1 and Jagged1 expressed by their progeny influence NSC recruitment, cell cycle duration and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the "mother" cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.

Article and author information

Author details

  1. Fatih Semerci

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0512-1827
  2. William Tin-Shing Choi

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aleksandar Bajic

    Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Aarohi Thakkar

    Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Juan Manuel Encinas

    Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Frederic Depreux

    Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Neil Segil

    Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew K Groves

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0784-7998
  9. Mirjana Maletic-Savatic

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    For correspondence
    maletics@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6548-4662

Funding

Cancer Prevention and Research Institute of Texas (RP130573CPRIT)

  • Mirjana Maletic-Savatic

Eunice Kennedy Shriver National Institute of Child Health and Human Development (U54HD083092)

  • Mirjana Maletic-Savatic

National Center for Research Resources (S10RR024574)

  • Mirjana Maletic-Savatic

National Institute of Allergy and Infectious Diseases (AI036211)

  • Mirjana Maletic-Savatic

National Cancer Center (P30CA125123)

  • Mirjana Maletic-Savatic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elaine Fuchs, Howard Hughes Medical Institute, The Rockefeller University, United States

Ethics

Animal experimentation: Mouse studies were approved by the Baylor College of Medicine Institutional Animal Care and Use Committee.

Version history

  1. Received: December 24, 2016
  2. Accepted: July 11, 2017
  3. Accepted Manuscript published: July 12, 2017 (version 1)
  4. Accepted Manuscript updated: July 13, 2017 (version 2)
  5. Version of Record published: July 27, 2017 (version 3)

Copyright

© 2017, Semerci et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,574
    views
  • 767
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fatih Semerci
  2. William Tin-Shing Choi
  3. Aleksandar Bajic
  4. Aarohi Thakkar
  5. Juan Manuel Encinas
  6. Frederic Depreux
  7. Neil Segil
  8. Andrew K Groves
  9. Mirjana Maletic-Savatic
(2017)
Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance
eLife 6:e24660.
https://doi.org/10.7554/eLife.24660

Share this article

https://doi.org/10.7554/eLife.24660

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article Updated

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.