Erythropoietin signaling regulates heme biosynthesis

  1. Jacky Chung
  2. Johannes Gottfried Wittig
  3. Alireza Ghamari
  4. Manami Maeda
  5. Tamara A Dailey
  6. Hector Bergonia
  7. Martin D Kafina
  8. Emma E Coughlin
  9. Catherine E Minogue
  10. Alexander S Hebert
  11. Liangtao Li
  12. Jerry Kaplan
  13. Harvey F Lodish
  14. Daniel E Bauer
  15. Stuart H Orkin
  16. Alan B Cantor
  17. Takahiro Maeda
  18. John D Phillips
  19. Joshua J Coon
  20. David J Pagliarini
  21. Harry A Dailey
  22. Barry H Paw  Is a corresponding author
  1. Harvard Medical School, United States
  2. University of East Anglia, United Kingdom
  3. Kyushu University Hospital, Japan
  4. University of Georgia, United States
  5. University of Utah School of Medicine, United States
  6. Genome Center of Wisconsin, United States
  7. University of Wisconsin-Madison, United States
  8. Massachusetts Institute of Technology, United States

Abstract

Heme is required for survival of all cells, and in most eukaryotes, is produced through a series of eight enzymatic reactions. Although heme production is critical for many cellular processes, how it is coupled to cellular differentiation is unknown. Here, using zebrafish, murine, and human models, we show that erythropoietin (EPO) signaling, together with the GATA1 transcriptional target, AKAP10, regulates heme biosynthesis during erythropoiesis at the outer mitochondrial membrane. This integrated pathway culminates with the direct phosphorylation of the crucial heme biosynthetic enzyme, ferrochelatase (FECH) by protein kinase A (PKA). Biochemical, pharmacological, and genetic inhibition of this signaling pathway result in a block in hemoglobin production and concomitant intracellular accumulation of protoporphyrin intermediates. Broadly, our results implicate aberrant PKA signaling in the pathogenesis of hematologic diseases. We propose a unifying model in which the erythroid transcriptional program works in concert with post-translational mechanisms to regulate heme metabolism during normal development.

Article and author information

Author details

  1. Jacky Chung

    Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Johannes Gottfried Wittig

    School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0598-2897
  3. Alireza Ghamari

    Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Manami Maeda

    Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoko, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Tamara A Dailey

    Department of Microbiology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hector Bergonia

    Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Martin D Kafina

    Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Emma E Coughlin

    Genome Center of Wisconsin, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Catherine E Minogue

    Department of Chemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alexander S Hebert

    Genome Center of Wisconsin, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Liangtao Li

    Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jerry Kaplan

    Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Harvey F Lodish

    Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Daniel E Bauer

    Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Stuart H Orkin

    Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Alan B Cantor

    Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Takahiro Maeda

    Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoko, Japan
    Competing interests
    The authors declare that no competing interests exist.
  18. John D Phillips

    Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Joshua J Coon

    Genome Center of Wisconsin, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. David J Pagliarini

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0001-0087
  21. Harry A Dailey

    Department of Microbiology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Barry H Paw

    Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    For correspondence
    bpaw@rics.bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0492-1419

Funding

National Heart, Lung, and Blood Institute (P01 HL032262)

  • Barry H Paw

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK096501)

  • Harry A Dailey

American Society of Hematology

  • Daniel E Bauer

National Heart, Lung, and Blood Institute (P01 HL032262)

  • Harvey F Lodish
  • Daniel E Bauer
  • Stuart H Orkin
  • Alan B Cantor

National Institutes of Health (R01 GM115591)

  • David J Pagliarini

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK098672)

  • David J Pagliarini

National Institutes of Health (P41 GM108538)

  • Joshua J Coon

National Institute of Diabetes and Digestive and Kidney Diseases (U54 DK110858)

  • John D Phillips

Diamond Blackfan Anemia Foundation

  • Barry H Paw

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK070838)

  • Barry H Paw

American Cancer Society (RSG-13-379-01-LIB)

  • Takahiro Maeda

American Society of Hematology

  • Jacky Chung

Canadian Institutes of Health Research

  • Jacky Chung

National Institute of Diabetes and Digestive and Kidney Diseases (K08 DK093705)

  • Daniel E Bauer

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK052380)

  • Jerry Kaplan

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK090257)

  • John D Phillips

National Institutes of Health (R01 GM114122)

  • Joshua J Coon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: In full compliance with BWH IACUC A4752-01 (Protocol #2016N000117) and BCH IACUC Protocol #15-07-2974R.

Copyright

© 2017, Chung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,528
    views
  • 521
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jacky Chung
  2. Johannes Gottfried Wittig
  3. Alireza Ghamari
  4. Manami Maeda
  5. Tamara A Dailey
  6. Hector Bergonia
  7. Martin D Kafina
  8. Emma E Coughlin
  9. Catherine E Minogue
  10. Alexander S Hebert
  11. Liangtao Li
  12. Jerry Kaplan
  13. Harvey F Lodish
  14. Daniel E Bauer
  15. Stuart H Orkin
  16. Alan B Cantor
  17. Takahiro Maeda
  18. John D Phillips
  19. Joshua J Coon
  20. David J Pagliarini
  21. Harry A Dailey
  22. Barry H Paw
(2017)
Erythropoietin signaling regulates heme biosynthesis
eLife 6:e24767.
https://doi.org/10.7554/eLife.24767

Share this article

https://doi.org/10.7554/eLife.24767

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.