Abstract

Visualization and tracking of the facial whiskers is required in an increasing number of rodent studies. Though many approaches have been employed, only high-speed videography has proven adequate for measuring whisker motion and deformation during interaction with an object. However, whisker visualization and tracking is challenging for multiple reasons, primary among them the low contrast of the whisker against its background. Here we demonstrate a fluorescent dye method suitable for visualization of one or more rat whiskers. The process makes the dyed whisker(s) easily visible against a dark background. The coloring does not influence the behavioral performance of rats trained on a vibrissal vibrotactile discrimination task, nor does it affect the whiskers’ mechanical properties.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Jacopo Rigosa

    International School for Advanced Studies, Trieste, Italy
    For correspondence
    jrigosa@sissa.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3184-994X
  2. Alessandro Lucantonio

    International School for Advanced Studies, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Giovanni Noselli

    International School for Advanced Studies, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Arash Fassihi

    International School for Advanced Studies, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Erik Zorzin

    International School for Advanced Studies, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabrizio Manzino

    International School for Advanced Studies, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Francesca Pulecchi

    International School for Advanced Studies, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Mathew E Diamond

    International School for Advanced Studies, Trieste, Italy
    For correspondence
    diamond@sissa.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2286-4566

Funding

Ministero dell'Istruzione, dell'Università e della Ricerca (GA 280778)

  • Mathew E Diamond

International School for Advanced Studies (NOFYSAS 2012)

  • Giovanni Noselli

Human Frontier Science Program (RG0015/2013)

  • Mathew E Diamond

European Commission (project 294498)

  • Mathew E Diamond

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The rats were under the care of a consulting veterinarian. Protocols followed the guidelines ofEU Directive 2010/63/EU, established as Italian decree 26/2014, and were approved by theSISSA Ethics Committee and the Italian Ministry of Health license numbers 569/2015-PR and570/2015-PR.

Copyright

© 2017, Rigosa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,450
    views
  • 354
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jacopo Rigosa
  2. Alessandro Lucantonio
  3. Giovanni Noselli
  4. Arash Fassihi
  5. Erik Zorzin
  6. Fabrizio Manzino
  7. Francesca Pulecchi
  8. Mathew E Diamond
(2017)
Dye-enhanced visualization of rat whiskers for behavioral studies
eLife 6:e25290.
https://doi.org/10.7554/eLife.25290

Share this article

https://doi.org/10.7554/eLife.25290

Further reading

    1. Neuroscience
    Jing Li, Chao Ning ... Chuan Zhou
    Research Article

    Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic–pituitary–gonadal axis in mammals to trigger the juvenile–adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.

    1. Neuroscience
    Yoav Ger, Moni Shahar, Nitzan Shahar
    Research Article

    Theoretical computational models are widely used to describe latent cognitive processes. However, these models do not equally explain data across participants, with some individuals showing a bigger predictive gap than others. In the current study, we examined the use of theory-independent models, specifically recurrent neural networks (RNNs), to classify the source of a predictive gap in the observed data of a single individual. This approach aims to identify whether the low predictability of behavioral data is mainly due to noisy decision-making or misspecification of the theoretical model. First, we used computer simulation in the context of reinforcement learning to demonstrate that RNNs can be used to identify model misspecification in simulated agents with varying degrees of behavioral noise. Specifically, both prediction performance and the number of RNN training epochs (i.e., the point of early stopping) can be used to estimate the amount of stochasticity in the data. Second, we applied our approach to an empirical dataset where the actions of low IQ participants, compared with high IQ participants, showed lower predictability by a well-known theoretical model (i.e., Daw’s hybrid model for the two-step task). Both the predictive gap and the point of early stopping of the RNN suggested that model misspecification is similar across individuals. This led us to a provisional conclusion that low IQ subjects are mostly noisier compared to their high IQ peers, rather than being more misspecified by the theoretical model. We discuss the implications and limitations of this approach, considering the growing literature in both theoretical and data-driven computational modeling in decision-making science.