Abstract

Visualization and tracking of the facial whiskers is required in an increasing number of rodent studies. Though many approaches have been employed, only high-speed videography has proven adequate for measuring whisker motion and deformation during interaction with an object. However, whisker visualization and tracking is challenging for multiple reasons, primary among them the low contrast of the whisker against its background. Here we demonstrate a fluorescent dye method suitable for visualization of one or more rat whiskers. The process makes the dyed whisker(s) easily visible against a dark background. The coloring does not influence the behavioral performance of rats trained on a vibrissal vibrotactile discrimination task, nor does it affect the whiskers’ mechanical properties.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Jacopo Rigosa

    International School for Advanced Studies, Trieste, Italy
    For correspondence
    jrigosa@sissa.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3184-994X
  2. Alessandro Lucantonio

    International School for Advanced Studies, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Giovanni Noselli

    International School for Advanced Studies, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Arash Fassihi

    International School for Advanced Studies, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Erik Zorzin

    International School for Advanced Studies, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabrizio Manzino

    International School for Advanced Studies, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Francesca Pulecchi

    International School for Advanced Studies, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Mathew E Diamond

    International School for Advanced Studies, Trieste, Italy
    For correspondence
    diamond@sissa.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2286-4566

Funding

Ministero dell'Istruzione, dell'Università e della Ricerca (GA 280778)

  • Mathew E Diamond

International School for Advanced Studies (NOFYSAS 2012)

  • Giovanni Noselli

Human Frontier Science Program (RG0015/2013)

  • Mathew E Diamond

European Commission (project 294498)

  • Mathew E Diamond

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Kleinfeld, University of California, San Diego, United States

Ethics

Animal experimentation: The rats were under the care of a consulting veterinarian. Protocols followed the guidelines ofEU Directive 2010/63/EU, established as Italian decree 26/2014, and were approved by theSISSA Ethics Committee and the Italian Ministry of Health license numbers 569/2015-PR and570/2015-PR.

Version history

  1. Received: January 20, 2017
  2. Accepted: June 13, 2017
  3. Accepted Manuscript published: June 14, 2017 (version 1)
  4. Version of Record published: July 14, 2017 (version 2)
  5. Version of Record updated: November 3, 2017 (version 3)
  6. Version of Record updated: March 13, 2018 (version 4)

Copyright

© 2017, Rigosa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,441
    views
  • 354
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jacopo Rigosa
  2. Alessandro Lucantonio
  3. Giovanni Noselli
  4. Arash Fassihi
  5. Erik Zorzin
  6. Fabrizio Manzino
  7. Francesca Pulecchi
  8. Mathew E Diamond
(2017)
Dye-enhanced visualization of rat whiskers for behavioral studies
eLife 6:e25290.
https://doi.org/10.7554/eLife.25290

Share this article

https://doi.org/10.7554/eLife.25290

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan Barense
    Research Article

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.