Physiological and pathophysiological control of synaptic GluN2B-NMDA receptors by the C-terminal domain of amyloid precursor protein

  1. Paula A Pousinha  Is a corresponding author
  2. Xavier Mouska
  3. Elisabeth F Raymond
  4. Carole Gwizdek
  5. Ghien Dhib
  6. Gwenola Poupon-Silvestre
  7. Laure-Emmanuelle Zaragosi
  8. Camilla Giudici
  9. Ingrid Bethus
  10. Emilie Pacary
  11. Michael Willem
  12. Hélène Marie  Is a corresponding author
  1. Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, France
  2. Ludwig-Maximilians-University Munich, Germany
  3. INSERM U1215, Neurocentre Magendie, France

Abstract

The amyloid precursor protein (APP) harbors physiological roles at synapses and is central to Alzheimer’s disease (AD) pathogenesis. Evidence suggests that APP intracellular domain (AICD) could regulate synapse function, but the underlying molecular mechanisms remain unknown. We addressed AICD actions at synapses, per se, combining in-vivo AICD expression, ex-vivo AICD delivery or APP knock-down by in utero electroporation of shRNAs with whole-cell electrophysiology. We report a critical physiological role of AICD in controlling GluN2B-containing NMDA receptors (NMDARs) at immature excitatory synapses, via a transcription-dependent mechanism. We further show that AICD increase in mature neurons, as reported in AD, alters synaptic NMDAR composition to an immature-like GluN2B-rich profile. This disrupts synaptic signal integration, via over-activation of SK channels, and synapse plasticity, phenotypes rescued by GluN2B antagonism. We provide a new physiological role for AICD, which becomes pathological upon AICD increase in mature neurons. Thus, AICD could contribute to AD synaptic failure.

Article and author information

Author details

  1. Paula A Pousinha

    Team Molecular Mechanisms of neuronal plasticity in health and disease, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France
    For correspondence
    pousinha@ipmc.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5992-9418
  2. Xavier Mouska

    Team Molecular Mechanisms of neuronal plasticity in health and disease, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4263-543X
  3. Elisabeth F Raymond

    Team Molecular Mechanisms of neuronal plasticity in health and disease, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Carole Gwizdek

    Team SUMOylation in neuronal function and dysfunction, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Ghien Dhib

    Team Molecular Mechanisms of neuronal plasticity in health and disease, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Gwenola Poupon-Silvestre

    Team SUMOylation in neuronal function and dysfunction, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Laure-Emmanuelle Zaragosi

    Team Physiological genomics of the eukaryotes, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Camilla Giudici

    Ludwig-Maximilians-University Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Ingrid Bethus

    Team Molecular Mechanisms of neuronal plasticity in health and disease, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Emilie Pacary

    INSERM U1215, Neurocentre Magendie, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael Willem

    Ludwig-Maximilians-University Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Hélène Marie

    Team Molecular Mechanisms of neuronal plasticity in health and disease, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France
    For correspondence
    marie@ipmc.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

Centre National de la Recherche Scientifique

  • Paula A Pousinha
  • Carole Gwizdek
  • Ghien Dhib

Fondation pour la Recherche Médicale (SPF20130526736)

  • Paula A Pousinha

Fondation Plan Alzheimer (Senior Innovative Grant 2010)

  • Xavier Mouska
  • Elisabeth F Raymond
  • Hélène Marie

Canceropôle PACA

  • Laure-Emmanuelle Zaragosi

Agence Nationale de la Recherche (ANR-10-INBS-09-03 ANR-10-INBS-09-02)

  • Xavier Mouska
  • Laure-Emmanuelle Zaragosi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Inna Slutsky, Tel Aviv University, Israel

Ethics

Animal experimentation: All experiments were done according to policies on the care and use of laboratory animals of European Communities Council Directive (2010/63). The protocols we approved by the French Research Ministry following evaluation by a specialized ethics committee (protocol number 00973.02). All efforts were made to minimize animal suffering and reduce the number of animals used.

Version history

  1. Received: February 2, 2017
  2. Accepted: July 5, 2017
  3. Accepted Manuscript published: July 6, 2017 (version 1)
  4. Accepted Manuscript updated: July 7, 2017 (version 2)
  5. Version of Record published: August 4, 2017 (version 3)

Copyright

© 2017, Pousinha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,226
    Page views
  • 471
    Downloads
  • 24
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paula A Pousinha
  2. Xavier Mouska
  3. Elisabeth F Raymond
  4. Carole Gwizdek
  5. Ghien Dhib
  6. Gwenola Poupon-Silvestre
  7. Laure-Emmanuelle Zaragosi
  8. Camilla Giudici
  9. Ingrid Bethus
  10. Emilie Pacary
  11. Michael Willem
  12. Hélène Marie
(2017)
Physiological and pathophysiological control of synaptic GluN2B-NMDA receptors by the C-terminal domain of amyloid precursor protein
eLife 6:e25659.
https://doi.org/10.7554/eLife.25659

Share this article

https://doi.org/10.7554/eLife.25659

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.