Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage

  1. Marketa Kaucka
  2. Tomas Zikmund
  3. Marketa Tesarova
  4. Daniel Gyllborg
  5. Andreas Hellander
  6. Josef Jaros
  7. Jozef Kaiser
  8. Julian Petersen
  9. Bara Szarowska
  10. Phillip T Newton
  11. Vyacheslav Dyachuk
  12. Lei Li
  13. Hong Qian
  14. Anne-Sofie Johansson
  15. Yuji Mishina
  16. Josh Currie
  17. Elly M Tanaka
  18. Alek Erickson
  19. Andrew Dudley
  20. Hjalmar Brismar
  21. Paul Southam
  22. Enrico Coen
  23. Min Chen
  24. Lee S Weinstein
  25. Ales Hampl
  26. Ernest Arenas
  27. Andrei S Chagin
  28. Kaj Fried  Is a corresponding author
  29. Igor Adameyko  Is a corresponding author
  1. Karolinska Institutet, Sweden
  2. Brno University of Technology, Czech Republic
  3. Uppsala University, Sweden
  4. Masaryk University, Czech Republic
  5. Medical University Vienna, Austria
  6. University of Michigan School of dentistry, United States
  7. Technische Universität Dresden, Germany
  8. University of Nebraska Medical Center, United States
  9. Royal Institute of Technology, Sweden
  10. John Innes Centre, United Kingdom
  11. National Institutes of Health, United States

Abstract

Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.

Article and author information

Author details

  1. Marketa Kaucka

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Tomas Zikmund

    Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Marketa Tesarova

    Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Gyllborg

    Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Andreas Hellander

    Department of Information Technology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Josef Jaros

    Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  7. Jozef Kaiser

    Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  8. Julian Petersen

    Center for Brain Research, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Bara Szarowska

    Center for Brain Research, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  10. Phillip T Newton

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Vyacheslav Dyachuk

    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Lei Li

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Hong Qian

    Department of Medicine, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  14. Anne-Sofie Johansson

    Department of Medicine, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  15. Yuji Mishina

    Department of Biologic and Materials Sciences, University of Michigan School of dentistry, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Josh Currie

    Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  17. Elly M Tanaka

    Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  18. Alek Erickson

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Andrew Dudley

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Hjalmar Brismar

    Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0578-4003
  21. Paul Southam

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  22. Enrico Coen

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8454-8767
  23. Min Chen

    National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Lee S Weinstein

    National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Ales Hampl

    Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  26. Ernest Arenas

    Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  27. Andrei S Chagin

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2696-5850
  28. Kaj Fried

    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    For correspondence
    kaj.fried@ki.se
    Competing interests
    The authors declare that no competing interests exist.
  29. Igor Adameyko

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    For correspondence
    igor.adameyko@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5471-0356

Funding

European Molecular Biology Organization (ALTF 216-2013)

  • Marketa Kaucka

Svenska Sällskapet för Medicinsk Forskning

  • Marketa Kaucka

Svenska Forskningsrådet Formas

  • Andreas Hellander
  • Phillip T Newton
  • Andrei S Chagin
  • Kaj Fried
  • Igor Adameyko

Karolinska Institutet

  • Phillip T Newton
  • Andrei S Chagin
  • Kaj Fried
  • Igor Adameyko

Bertil Hållstens Forskningsstiftelse

  • Igor Adameyko

Åke Wiberg Stiftelse

  • Igor Adameyko

National Institutes of Health

  • Andreas Hellander

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal (mouse) work has been approved and permitted by the Ethical Committee on Animal Experiments (Norra Djurförsöksetiska Nämd, ethical permit N226/15 and N5/14) and conducted according to The Swedish Animal Agency´s Provisions and Guidelines for Animal Experimentation recommendations.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,609
    views
  • 699
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marketa Kaucka
  2. Tomas Zikmund
  3. Marketa Tesarova
  4. Daniel Gyllborg
  5. Andreas Hellander
  6. Josef Jaros
  7. Jozef Kaiser
  8. Julian Petersen
  9. Bara Szarowska
  10. Phillip T Newton
  11. Vyacheslav Dyachuk
  12. Lei Li
  13. Hong Qian
  14. Anne-Sofie Johansson
  15. Yuji Mishina
  16. Josh Currie
  17. Elly M Tanaka
  18. Alek Erickson
  19. Andrew Dudley
  20. Hjalmar Brismar
  21. Paul Southam
  22. Enrico Coen
  23. Min Chen
  24. Lee S Weinstein
  25. Ales Hampl
  26. Ernest Arenas
  27. Andrei S Chagin
  28. Kaj Fried
  29. Igor Adameyko
(2017)
Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage
eLife 6:e25902.
https://doi.org/10.7554/eLife.25902

Share this article

https://doi.org/10.7554/eLife.25902

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.