H+- and Na+- elicited rapid changes of the microtubule cytoskeleton in the biflagellated green alga Chlamydomonas

  1. Yi Liu
  2. Mike Visetsouk
  3. Michelle Mynlieff
  4. Hongmin Qin
  5. Karl F Lechtreck
  6. Pinfen Yang  Is a corresponding author
  1. Marquette University, United States
  2. Texas A&M University, United States
  3. University of Georgia, United States

Abstract

Although microtubules are known for dynamic instability, the dynamicity is considered to be tightly controlled to support a variety of cellular processes. Yet diverse evidence suggests that this is not applicable to Chlamydomonas, a biflagellate fresh water green alga, but intense autofluorescence from photosynthesis pigments has hindered the investigation. By expressing a bright fluorescent reporter protein at the endogenous level, we demonstrate in real time discreet sweeping changes in algal microtubules elicited by rises of intracellular H+ and Na+. These results from this model organism with characteristics of animal and plant cells provide novel explanations regarding how pH may drive cellular processes; how plants may respond to, and perhaps sense stresses; and how organisms with a similar sensitive cytoskeleton may be susceptible to environmental changes.

Article and author information

Author details

  1. Yi Liu

    Department of Biological Sciences, Marquette University, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mike Visetsouk

    Department of Biological Sciences, Marquette University, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michelle Mynlieff

    Department of Biological Sciences, Marquette University, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hongmin Qin

    Department of Biology, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Karl F Lechtreck

    Department of Cellular Biology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6219-6470
  6. Pinfen Yang

    Department of Biological Sciences, Marquette University, Milwaukee, United States
    For correspondence
    pinfen.yang@marquette.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3773-0053

Funding

Marquette University (Start up)

  • Pinfen Yang

National Institute of Health (GM110413)

  • Karl F Lechtreck

Marquette University (RCM Growth Incentive Fund)

  • Pinfen Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,749
    views
  • 236
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yi Liu
  2. Mike Visetsouk
  3. Michelle Mynlieff
  4. Hongmin Qin
  5. Karl F Lechtreck
  6. Pinfen Yang
(2017)
H+- and Na+- elicited rapid changes of the microtubule cytoskeleton in the biflagellated green alga Chlamydomonas
eLife 6:e26002.
https://doi.org/10.7554/eLife.26002

Share this article

https://doi.org/10.7554/eLife.26002