Nociceptive interneurons control modular motor pathways to promote escape behavior in Drosophila

  1. Anita Burgos  Is a corresponding author
  2. Ken Honjo
  3. Tomoko Ohyama
  4. Cheng Sam Qian
  5. Grace Ji-eun Shin
  6. Daryl M Gohl
  7. Marion Silies
  8. W Daniel Tracey
  9. Marta Zlatic
  10. Albert Cardona
  11. Wesley B Grueber  Is a corresponding author
  1. Columbia University Medical Center, United States
  2. University of Tsukuba, Japan
  3. McGill University, Canada
  4. University of Minnesota Genomics Center, United States
  5. European Neuroscience Institute, Germany
  6. Indiana University, United States
  7. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Rapid and efficient escape behaviors in response to noxious sensory stimuli are essential for protection and survival. Yet, how noxious stimuli are transformed to coordinated escape behaviors remains poorly understood. In Drosophila larvae, noxious stimuli trigger sequential body bending and corkscrew-like rolling behavior. We identified a population of interneurons in the nerve cord of Drosophila, termed Down-and-Back (DnB) neurons, that are activated by noxious heat, promote nociceptive behavior, and are required for robust escape responses to noxious stimuli. Electron microscopic circuit reconstruction shows that DnBs are targets of nociceptive and mechanosensory neurons, are directly presynaptic to pre-motor circuits, and link indirectly to Goro rolling command-like neurons. DnB activation promotes activity in Goro neurons, and coincident inactivation of Goro neurons prevents the rolling sequence but leaves intact body bending motor responses. Thus, activity from nociceptors to DnB interneurons coordinates modular elements of nociceptive escape behavior.

Article and author information

Author details

  1. Anita Burgos

    Department of Neuroscience, Columbia University Medical Center, New York, United States
    For correspondence
    ab3271@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Ken Honjo

    Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Tomoko Ohyama

    Department of Biology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Cheng Sam Qian

    Department of Neuroscience, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Grace Ji-eun Shin

    Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daryl M Gohl

    University of Minnesota Genomics Center, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Marion Silies

    European Neuroscience Institute, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. W Daniel Tracey

    The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4666-8199
  9. Marta Zlatic

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Albert Cardona

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4941-6536
  11. Wesley B Grueber

    Department of Neuroscience, Columbia University Medical Center, New York, United States
    For correspondence
    wg2135@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6751-256X

Funding

National Science Foundation (Graduate Research Fellowship)

  • Anita Burgos

National Institutes of Health (NS090909-01)

  • Anita Burgos

Howard Hughes Medical Institute

  • Marta Zlatic

National Institutes of Health (NS061908)

  • Wesley B Grueber

National Institutes of Health (GM086458)

  • W Daniel Tracey

National Institutes of Health (NS086564)

  • Wesley B Grueber

Howard Hughes Medical Institute

  • Albert Cardona

Thompson Family Foundation (Innovation Award)

  • Grace Ji-eun Shin
  • Wesley B Grueber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Burgos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,435
    views
  • 811
    downloads
  • 81
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anita Burgos
  2. Ken Honjo
  3. Tomoko Ohyama
  4. Cheng Sam Qian
  5. Grace Ji-eun Shin
  6. Daryl M Gohl
  7. Marion Silies
  8. W Daniel Tracey
  9. Marta Zlatic
  10. Albert Cardona
  11. Wesley B Grueber
(2018)
Nociceptive interneurons control modular motor pathways to promote escape behavior in Drosophila
eLife 7:e26016.
https://doi.org/10.7554/eLife.26016

Share this article

https://doi.org/10.7554/eLife.26016

Further reading

    1. Neuroscience
    Hyun Jee Lee, Jingting Liang ... Hang Lu
    Research Advance

    Cell identification is an important yet difficult process in data analysis of biological images. Previously, we developed an automated cell identification method called CRF_ID and demonstrated its high performance in Caenorhabditis elegans whole-brain images (Chaudhary et al., 2021). However, because the method was optimized for whole-brain imaging, comparable performance could not be guaranteed for application in commonly used C. elegans multi-cell images that display a subpopulation of cells. Here, we present an advancement, CRF_ID 2.0, that expands the generalizability of the method to multi-cell imaging beyond whole-brain imaging. To illustrate the application of the advance, we show the characterization of CRF_ID 2.0 in multi-cell imaging and cell-specific gene expression analysis in C. elegans. This work demonstrates that high-accuracy automated cell annotation in multi-cell imaging can expedite cell identification and reduce its subjectivity in C. elegans and potentially other biological images of various origins.

    1. Neuroscience
    Geoffrey W Meissner, Allison Vannan ... FlyLight Project Team
    Research Article

    Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in Drosophila melanogaster and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult Drosophila CNS and 1373 lines characterized in third-instar larvae. These tools enable functional, transcriptomic, and proteomic studies based on precise anatomical targeting. NeuronBridge and other search tools relate light microscopy images of these split-GAL4 lines to connectomes reconstructed from electron microscopy images. The collections are the result of screening over 77,000 split hemidriver combinations. Previously published and new lines are included, all validated for driver expression and curated for optimal cell-type specificity across diverse cell types. In addition to images and fly stocks for these well-characterized lines, we make available 300,000 new 3D images of other split-GAL4 lines.