SOXF factors regulate murine satellite cell self-renewal and function through inhibition of β-catenin activity

  1. Sonia Alonso-Martin  Is a corresponding author
  2. Frédéric Auradé
  3. Despoina Mademtzoglou
  4. Anne Rochat
  5. Peter S Zammit
  6. Frédéric Relaix  Is a corresponding author
  1. Institut Mondor de Recherche Biomedicale, INSERM U955-E10, France
  2. Sorbonne Universites, INSERM U974, France
  3. Kings College London, United Kingdom

Abstract

Muscle satellite cells are the primary source of stem cells for postnatal skeletal muscle growth and regeneration. Understanding genetic control of satellite cell formation, maintenance, and acquisition of their stem cell properties is on-going, and we have identified SOXF (SOX7, SOX17, SOX18) transcriptional factors as being induced during satellite cell specification. We demonstrate that SOXF factors regulate satellite cell quiescence, self-renewal and differentiation. Moreover, ablation of Sox17 in the muscle lineage impairs postnatal muscle growth and regeneration. We further determine that activities of SOX7, SOX17 and SOX18 overlap during muscle regeneration, with SOXF transcriptional activity requisite. Finally, we show that SOXF factors also control satellite cell expansion and renewal by directly inhibiting the output of β-catenin activity, including inhibition of Ccnd1 and Axin2. Together, our findings identify a key regulatory function of SoxF genes in muscle stem cells via direct transcriptional control and interaction with canonical Wnt/β-catenin signaling.

Data availability

Sequencing data have been deposited in GEO under accession code GSE63860 and previously published in:Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis. Alonso-Martin S, Rochat A, Mademtzoglou D, Morais J, de Reyniès A, Auradé F, Chang TH, Zammit PS, Relaix F. Front Cell Dev Biol. 2016 Jun 21;4:58. doi: 10.3389/fcell.2016.00058. eCollection 2016. PMID: 27446912.

The following previously published data sets were used

Article and author information

Author details

  1. Sonia Alonso-Martin

    Institut Mondor de Recherche Biomedicale, INSERM U955-E10, Créteil, France
    For correspondence
    alonsomartin.s@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3254-0365
  2. Frédéric Auradé

    Center for Research in Myology, Sorbonne Universites, INSERM U974, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Despoina Mademtzoglou

    Institut Mondor de Recherche Biomedicale, INSERM U955-E10, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anne Rochat

    Center for Research in Myology, Sorbonne Universites, INSERM U974, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter S Zammit

    Randall Centre for Cell and Molecular Biophysics, Kings College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9562-3072
  6. Frédéric Relaix

    Institut Mondor de Recherche Biomedicale, INSERM U955-E10, Créteil, France
    For correspondence
    frelaix@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1270-1472

Funding

Basque Community (BF106.177)

  • Sonia Alonso-Martin

Muscular Dystrophy UK

  • Peter S Zammit

Medical Research Council

  • Peter S Zammit

FSH Society and BIODESIGN (262948-2)

  • Peter S Zammit

Deutsche Forschungsgemeinschaft (KFO192 (Sp1152/8-1))

  • Despoina Mademtzoglou

Fondation pour la Recherche Médicale (DEQ20130326526)

  • Frédéric Relaix

Agence Nationale de la Recherche (ANR-13-BSV1-0011-02)

  • Frédéric Relaix

Agence Nationale de la Recherche (ANR-12-BSV1-0038-04)

  • Frédéric Relaix

Agence Nationale de la Recherche (ANR-15-CE13-0011-01)

  • Frédéric Relaix

Agence Nationale de la Recherche (ANR-15-RHUS-0003)

  • Frédéric Relaix

Deutsche Forschungsgemeinschaft (GK 1631)

  • Despoina Mademtzoglou

INSERM Avenir Program

  • Frédéric Relaix

Association Française contre les Myopathies (TRANSLAMUSCLE 19507)

  • Frédéric Relaix

Association Institut de Myologie

  • Frédéric Relaix

Labex REVIVE (ANR-10-LABX-73)

  • Frédéric Relaix

European Union Sixth and Seventh Framework Program (MYORES and ENDOSTEM # 241440)

  • Peter S Zammit
  • Frédéric Relaix

Fondation pour la Recherche Médicale (FDT20130928236)

  • Frédéric Relaix

Agence Nationale de la Recherche (ANR 11 BSV2 017 02)

  • Frédéric Relaix

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals were maintained inside a barrier facility and all experiment were performed in accordance with the European and French regulations for animal care and handling (Project No: 01427.03 approved by MESR and File No: 15-018 from the Ethical Committee of Anses/ENVA/UPEC).

Copyright

© 2018, Alonso-Martin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,069
    views
  • 335
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.26039

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.