The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline

  1. Alexis S Bailey
  2. Pedro J Batista
  3. Rebecca S Gold
  4. Y Grace Chen
  5. Dirk G de Rooij
  6. Howard Y Chang
  7. Margaret T Fuller  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. University of Amsterdam, Netherlands

Abstract

The switch from mitosis to meiosis is the key event marking onset of differentiation in the germline stem cell lineage. In Drosophila, the translational repressor Bgcn is required for spermatogonia to stop mitosis and transition to meiotic prophase and the spermatocyte state. Here we show that the mammalian Bgcn ortholog YTHDC2 facilitates a clean switch from mitosis to meiosis in mouse germ cells, revealing a conserved role for YTHDC2 in this critical cell fate transition. YTHDC2-deficient male germ cells enter meiosis but have a mixed identity, maintaining expression of Cyclin A2 and failing to properly express many meiotic markers. Instead of continuing through meiotic prophase, the cells attempt an abnormal mitotic-like division and die. YTHDC2 binds multiple transcripts including Ccna2 and other mitotic transcripts, binds specific piRNA precursors, and interacts with RNA granule components, suggesting that proper progression of germ cells through meiosis is licensed by YTHDC2 through post-transcriptional regulation.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Alexis S Bailey

    Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Pedro J Batista

    Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rebecca S Gold

    Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Y Grace Chen

    Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dirk G de Rooij

    Center for Reproductive Medicine, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Howard Y Chang

    Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Margaret T Fuller

    Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    mtfuller@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3804-4987

Funding

National Institutes of Health (NIH T32 HD007249)

  • Alexis S Bailey

Lalor Foundation (Postdoctoral Fellowship)

  • Alexis S Bailey

National Cancer Institute (Intramural Research Program of the NIH)

  • Pedro J Batista

National Institutes of Health (NIH R01 HG004361)

  • Howard Y Chang

Reed-Hodgson Professorship

  • Margaret T Fuller

National Institutes of Health (NIH P50 HD068158)

  • Margaret T Fuller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (NIH). All of the experiments were approved by the Stanford University Animal Care and Use Committee (IACUC), protocol (#21656).

Human subjects: Human testis sections were obtained from the Fertility Preservation Program of Pittsburgh. Informed consent was obtained and the testicular tissue freezing protocol was approved by the Institutional Review Board of the University of Pittsburgh.

Copyright

© 2017, Bailey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,864
    views
  • 739
    downloads
  • 175
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexis S Bailey
  2. Pedro J Batista
  3. Rebecca S Gold
  4. Y Grace Chen
  5. Dirk G de Rooij
  6. Howard Y Chang
  7. Margaret T Fuller
(2017)
The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline
eLife 6:e26116.
https://doi.org/10.7554/eLife.26116

Share this article

https://doi.org/10.7554/eLife.26116

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.