FXR1 regulates transcription and is required for growth of human cancer cells with TP53/FXR2 homozygous deletion

  1. Yichao Fan
  2. Jiao Yue
  3. Mengtao Xiao
  4. Han Han-Zhang
  5. Yao Vickie Wang
  6. Chun Ma
  7. Zhilin Deng
  8. Yingxiang Li
  9. Yanyan Yu
  10. Xinghao Wang
  11. Shen Niu
  12. Youjia Hua
  13. Zhiping Weng
  14. Peter Atadja
  15. En Li
  16. Bin Xiang  Is a corresponding author
  1. Novartis Institute for BioMedical Research, China
  2. Novartis Institutes for BioMedical Research, China
  3. Tongji University, China

Abstract

Tumor suppressor p53 prevents cell transformation by inducing apoptosis and other responses. Homozygous TP53 deletion occurs in various types of human cancers for which no therapeutic strategies have yet been reported. Based on TCGA database analysis, TP53 homozygous deletion locus mostly exhibits co-deletion of the neighboring gene FXR2, which belongs to the Fragile X gene family. Here, we demonstrate that inhibition of the remaining family member FXR1 selectively blocks cell proliferation in cancer cells containing homozygous deletion of both TP53 and FXR2 in a collateral lethality manner. Mechanistically, in addition to its RNA-binding function, FXR1 recruits transcription factor STAT1 or STAT3 to gene promoters at the chromatin interface and regulates transcription thus, at least partially, mediating cell proliferation. Our study anticipates that inhibition of FXR1 is a potential therapeutic approach to targeting human cancers harboring TP53 homozygous deletion.

Article and author information

Author details

  1. Yichao Fan

    Epigenetic Discovery, Novartis Institute for BioMedical Research, Shanghai, China
    Competing interests
    No competing interests declared.
  2. Jiao Yue

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    Competing interests
    Jiao Yue, Jiao Yue is an employee for Novartis, Inc., where part of the study was conducted..
  3. Mengtao Xiao

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    Competing interests
    Mengtao Xiao, Mengtao Xiao is an employee for Novartis, Inc., where part of the study was conducted..
  4. Han Han-Zhang

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    Competing interests
    Han Han-Zhang, Han Han-Zhang is an employee for Novartis, Inc., where part of the study was conducted..
  5. Yao Vickie Wang

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    Competing interests
    No competing interests declared.
  6. Chun Ma

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    Competing interests
    No competing interests declared.
  7. Zhilin Deng

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    Competing interests
    No competing interests declared.
  8. Yingxiang Li

    Department of Bioinformatics, Tongji University, Shanghai, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0835-9280
  9. Yanyan Yu

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    Competing interests
    Yanyan Yu, Yanyan Yu is an employee for Novartis, Inc., where part of the study was conducted..
  10. Xinghao Wang

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    Competing interests
    No competing interests declared.
  11. Shen Niu

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    Competing interests
    Shen Niu, Shen Niu is an employee for Novartis, Inc., where part of the study was conducted..
  12. Youjia Hua

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    Competing interests
    Youjia Hua, Youjia Hua is an employee for Novartis, Inc., where part of the study was conducted..
  13. Zhiping Weng

    Department of Bioinformatics, Tongji University, Shanghai, China
    Competing interests
    No competing interests declared.
  14. Peter Atadja

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    Competing interests
    Peter Atadja, Peter Atadja is an employee for Novartis, Inc., where part of the study was conducted..
  15. En Li

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    Competing interests
    No competing interests declared.
  16. Bin Xiang

    Epigenetic Discovery, Novartis Institutes for BioMedical Research, Shanghai, China
    For correspondence
    bin.xiang@novartis.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6973-100X

Funding

Novartis (Research)

  • Bin Xiang

Novartis (Postdoc program)

  • Yichao Fan

The authors declare that there was no funding for this work.

Ethics

Animal experimentation: All the procedures related to animal handling, care and the treatment in the study were performed according to the guidelines approved by the Institutional Animal Care and Use Committee (IACUC) of WuXi AppTec following the guidance of the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). The approved protocol number is R20150728-Mouse and Rat. The animals were daily checked for any effects of tumor growth and treatments on normal behavior such as mobility, food and water consumption, body weight gain/loss, eye/hair matting and any other abnormal effects. Death and observed clinical signs were recorded.

Copyright

© 2017, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,025
    views
  • 450
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yichao Fan
  2. Jiao Yue
  3. Mengtao Xiao
  4. Han Han-Zhang
  5. Yao Vickie Wang
  6. Chun Ma
  7. Zhilin Deng
  8. Yingxiang Li
  9. Yanyan Yu
  10. Xinghao Wang
  11. Shen Niu
  12. Youjia Hua
  13. Zhiping Weng
  14. Peter Atadja
  15. En Li
  16. Bin Xiang
(2017)
FXR1 regulates transcription and is required for growth of human cancer cells with TP53/FXR2 homozygous deletion
eLife 6:e26129.
https://doi.org/10.7554/eLife.26129

Share this article

https://doi.org/10.7554/eLife.26129

Further reading

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.

    1. Cancer Biology
    2. Computational and Systems Biology
    Nayoung Kim, Sehhoon Park ... Myung-Ju Ahn
    Research Article

    This study investigates the variability among patients with non-small cell lung cancer (NSCLC) in their responses to immune checkpoint inhibitors (ICIs). Recognizing that patients with advanced-stage NSCLC rarely qualify for surgical interventions, it becomes crucial to identify biomarkers that influence responses to ICI therapy. We conducted an analysis of single-cell transcriptomes from 33 lung cancer biopsy samples, with a particular focus on 14 core samples taken before the initiation of palliative ICI treatment. Our objective was to link tumor and immune cell profiles with patient responses to ICI. We discovered that ICI non-responders exhibited a higher presence of CD4+ regulatory T cells, resident memory T cells, and TH17 cells. This contrasts with the diverse activated CD8+ T cells found in responders. Furthermore, tumor cells in non-responders frequently showed heightened transcriptional activity in the NF-kB and STAT3 pathways, suggesting a potential inherent resistance to ICI therapy. Through the integration of immune cell profiles and tumor molecular signatures, we achieved an discriminative power (area under the curve [AUC]) exceeding 95% in identifying patient responses to ICI treatment. These results underscore the crucial importance of the interplay between tumor and immune microenvironment, including within metastatic sites, in affecting the effectiveness of ICIs in NSCLC.