Abstract

Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was found under both natural and optogenetically-evoked conditions, and was interneuron-type specific. Moreover, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale.

Article and author information

Author details

  1. Stefano Zucca

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Giulia D'Urso

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Valentina Pasquale

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4499-9536
  4. Dania Vecchia

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Giuseppe Pica

    Center of Neuroscience and Cognitive Systems, Italian Institute of Technology, Rovereto, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Serena Bovetti

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudio Moretti

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefano Varani

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Manuel Molano-Mazón

    Center of Neuroscience and Cognitive Systems, Italian Institute of Technology, Rovereto, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Michela Chiappalone

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Stefano Panzeri

    Center for Neuroscience and Cognitive Systems, Italian Institute of Technology, Rovereto, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1700-8909
  12. Tommaso Fellin

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    For correspondence
    tommaso.fellin@iit.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2718-7533

Funding

European Research Council (NEURO-PATTERNS)

  • Tommaso Fellin

National Institutes of Health (1U01NS090576-01)

  • Tommaso Fellin

Seventh Framework Programme (DESIRE)

  • Tommaso Fellin

MIUR FIRB (RBAP11X42L)

  • Tommaso Fellin

Flag-Era JTC Human Brain Project (SLOW-DYN)

  • Stefano Panzeri
  • Tommaso Fellin

H2020 MSCA IF 2015: Manuel Molano ETIC (699829)

  • Manuel Molano-Mazón

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental procedures involving animals have been approved by the IIT Animal Welfare Body and by the Italian Ministry of Health (authorization # 34/2015-PR and 125/2012-B), in accordance with the National legislation (D.Lgs. 26/2014) and the European legislation (European Directive 2010/63/EU). All surgery was performed under urethane or isofluorane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2017, Zucca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,478
    views
  • 968
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefano Zucca
  2. Giulia D'Urso
  3. Valentina Pasquale
  4. Dania Vecchia
  5. Giuseppe Pica
  6. Serena Bovetti
  7. Claudio Moretti
  8. Stefano Varani
  9. Manuel Molano-Mazón
  10. Michela Chiappalone
  11. Stefano Panzeri
  12. Tommaso Fellin
(2017)
An inhibitory gate for state transition in cortex
eLife 6:e26177.
https://doi.org/10.7554/eLife.26177

Share this article

https://doi.org/10.7554/eLife.26177

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.