Abstract

Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was found under both natural and optogenetically-evoked conditions, and was interneuron-type specific. Moreover, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale.

Article and author information

Author details

  1. Stefano Zucca

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Giulia D'Urso

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Valentina Pasquale

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4499-9536
  4. Dania Vecchia

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Giuseppe Pica

    Center of Neuroscience and Cognitive Systems, Italian Institute of Technology, Rovereto, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Serena Bovetti

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudio Moretti

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefano Varani

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Manuel Molano-Mazón

    Center of Neuroscience and Cognitive Systems, Italian Institute of Technology, Rovereto, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Michela Chiappalone

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Stefano Panzeri

    Center for Neuroscience and Cognitive Systems, Italian Institute of Technology, Rovereto, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1700-8909
  12. Tommaso Fellin

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    For correspondence
    tommaso.fellin@iit.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2718-7533

Funding

European Research Council (NEURO-PATTERNS)

  • Tommaso Fellin

National Institutes of Health (1U01NS090576-01)

  • Tommaso Fellin

Seventh Framework Programme (DESIRE)

  • Tommaso Fellin

MIUR FIRB (RBAP11X42L)

  • Tommaso Fellin

Flag-Era JTC Human Brain Project (SLOW-DYN)

  • Stefano Panzeri
  • Tommaso Fellin

H2020 MSCA IF 2015: Manuel Molano ETIC (699829)

  • Manuel Molano-Mazón

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental procedures involving animals have been approved by the IIT Animal Welfare Body and by the Italian Ministry of Health (authorization # 34/2015-PR and 125/2012-B), in accordance with the National legislation (D.Lgs. 26/2014) and the European legislation (European Directive 2010/63/EU). All surgery was performed under urethane or isofluorane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2017, Zucca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,521
    views
  • 974
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.26177

Further reading

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance Updated

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.