Analysis of SUMO1-conjugation at Synapses

  1. James A Daniel
  2. Benjamin H Cooper
  3. Jorma J Palvimo
  4. Fu-ping Zhang
  5. Nils Brose
  6. Marilyn Tirard  Is a corresponding author
  1. Max Planck Institute of Experimental Medicine, Germany
  2. University of Eastern Finland, Finland
  3. University of Turku, Finland

Abstract

SUMO1-conjugation of proteins at neuronal synapses is considered to be a major post-translational regulatory process in nerve cell and synapse function, but the published evidence for SUMO1-conjugation at synapses is contradictory. We employed multiple genetic mouse models for stringently controlled biochemical and immunostaining analyses of synaptic SUMO1-conjugation. By using a knock-in reporter mouse line expressing tagged SUMO1, we could not detect SUMO1-conjugation of seven previously proposed synaptic SUMO1-targets in the brain. Further, immunostaining of cultured neurons from wild-type and SUMO1 knock-out mice showed that anti-SUMO1 immunolabelling at synapses is non-specific. Our findings indicate that SUMO1-conjugation of synaptic proteins does not occur or is extremely rare and hence not detectable using current methodology. Based on our data, we discuss a set of experimental strategies and minimal consensus criteria for the validation of SUMOylation that can be applied to any SUMOylation substrate and SUMO isoform.

Article and author information

Author details

  1. James A Daniel

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2781-4544
  2. Benjamin H Cooper

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jorma J Palvimo

    Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
  4. Fu-ping Zhang

    Institute of Biomedicine, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  5. Nils Brose

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Marilyn Tirard

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    For correspondence
    tirard@em.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5669-9610

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Marilyn Tirard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in accordance with the guidelines for the welfare of experimental animals issued by the State Government of Lower Saxony, Germany, in compliance with European and NIH guidelines (33.9-42502-04-13/1359).

Copyright

© 2017, Daniel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,022
    views
  • 479
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James A Daniel
  2. Benjamin H Cooper
  3. Jorma J Palvimo
  4. Fu-ping Zhang
  5. Nils Brose
  6. Marilyn Tirard
(2017)
Analysis of SUMO1-conjugation at Synapses
eLife 6:e26338.
https://doi.org/10.7554/eLife.26338

Share this article

https://doi.org/10.7554/eLife.26338

Further reading

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.