1. Neuroscience
Download icon

Analysis of SUMO1-conjugation at Synapses

  1. James A Daniel
  2. Benjamin H Cooper
  3. Jorma J Palvimo
  4. Fu-ping Zhang
  5. Nils Brose
  6. Marilyn Tirard  Is a corresponding author
  1. Max Planck Institute of Experimental Medicine, Germany
  2. University of Eastern Finland, Finland
  3. University of Turku, Finland
Research Article
  • Cited 17
  • Views 2,447
  • Annotations
Cite this article as: eLife 2017;6:e26338 doi: 10.7554/eLife.26338

Abstract

SUMO1-conjugation of proteins at neuronal synapses is considered to be a major post-translational regulatory process in nerve cell and synapse function, but the published evidence for SUMO1-conjugation at synapses is contradictory. We employed multiple genetic mouse models for stringently controlled biochemical and immunostaining analyses of synaptic SUMO1-conjugation. By using a knock-in reporter mouse line expressing tagged SUMO1, we could not detect SUMO1-conjugation of seven previously proposed synaptic SUMO1-targets in the brain. Further, immunostaining of cultured neurons from wild-type and SUMO1 knock-out mice showed that anti-SUMO1 immunolabelling at synapses is non-specific. Our findings indicate that SUMO1-conjugation of synaptic proteins does not occur or is extremely rare and hence not detectable using current methodology. Based on our data, we discuss a set of experimental strategies and minimal consensus criteria for the validation of SUMOylation that can be applied to any SUMOylation substrate and SUMO isoform.

Article and author information

Author details

  1. James A Daniel

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2781-4544
  2. Benjamin H Cooper

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jorma J Palvimo

    Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
  4. Fu-ping Zhang

    Institute of Biomedicine, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  5. Nils Brose

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Marilyn Tirard

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    For correspondence
    tirard@em.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5669-9610

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Marilyn Tirard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in accordance with the guidelines for the welfare of experimental animals issued by the State Government of Lower Saxony, Germany, in compliance with European and NIH guidelines (33.9-42502-04-13/1359).

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Publication history

  1. Received: February 28, 2017
  2. Accepted: June 7, 2017
  3. Accepted Manuscript published: June 9, 2017 (version 1)
  4. Version of Record published: June 30, 2017 (version 2)

Copyright

© 2017, Daniel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,447
    Page views
  • 435
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Casey Paquola et al.
    Tools and Resources Updated

    Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is ‘BigBrain’. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, ’BigBrainWarp’, that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices. This is accomplished with a simple wrapper function that allows users to easily map data between BigBrain and standard MRI spaces. The function automatically pulls specialised transformation procedures, based on ongoing research from a wide collaborative network of researchers. Additionally, the toolbox improves accessibility of histological information through dissemination of ready-to-use cytoarchitectural features. Finally, we demonstrate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to support multi-scale investigations of brain organisation.

    1. Neuroscience
    Gabriella R Sterne et al.
    Tools and Resources Updated

    Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult Drosophila melanogaster, comprising approximately one third of all SEZ neurons. We characterize the single-cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.