Synaptic and peptidergic connectome of a neurosecretory centre in the annelid brain

Abstract

Neurosecretory centers in animal brains use peptidergic signaling to influence physiology and behavior. Understanding neurosecretory center function requires mapping cell types, synapses, and peptidergic networks. Here we use transmission electron microscopy and gene expression mapping to analyze the synaptic and peptidergic connectome of an entire neurosecretory center. We reconstructed 78 neurosecretory neurons and mapped their synaptic connectivity in the brain of larval Platynereis dumerilii, a marine annelid. These neurons form an anterior neurosecretory center expressing many neuropeptides, including hypothalamic peptide orthologs and their receptors. Analysis of peptide-receptor pairs in spatially mapped single-cell transcriptome data revealed sparsely connected networks linking specific neuronal subsets. We experimentally analyzed one peptide-receptor pair and found that a neuropeptide can couple neurosecretory and synaptic brain signaling. Our study uncovered extensive networks of peptidergic signaling within a neurosecretory center and its connection to the synaptic brain.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Elizabeth A Williams

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    For correspondence
    elizabeth.williams@tuebingen.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3067-3137
  2. Csaba Verasztó

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6295-7148
  3. Sanja Jasek

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Markus Conzelmann

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Réza Shahidi

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Philipp Bauknecht

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Olivier Mirabeau

    Cancer Genetics Unit, Inserm U830, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Gáspár Jékely

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Max-Planck-Gesellschaft (N/A)

  • Elizabeth A Williams
  • Csaba Verasztó
  • Sanja Jasek
  • Markus Conzelmann
  • Philipp Bauknecht

Deutsche Forschungsgemeinschaft (JE 777/1-1)

  • Elizabeth A Williams

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Williams et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,183
    views
  • 453
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth A Williams
  2. Csaba Verasztó
  3. Sanja Jasek
  4. Markus Conzelmann
  5. Réza Shahidi
  6. Philipp Bauknecht
  7. Olivier Mirabeau
  8. Gáspár Jékely
(2017)
Synaptic and peptidergic connectome of a neurosecretory centre in the annelid brain
eLife 6:e26349.
https://doi.org/10.7554/eLife.26349

Share this article

https://doi.org/10.7554/eLife.26349

Further reading

    1. Neuroscience
    Hannah Bos, Christoph Miehl ... Brent Doiron
    Research Article

    Synaptic inhibition is the mechanistic backbone of a suite of cortical functions, not the least of which are maintaining network stability and modulating neuronal gain. In cortical models with a single inhibitory neuron class, network stabilization and gain control work in opposition to one another – meaning high gain coincides with low stability and vice versa. It is now clear that cortical inhibition is diverse, with molecularly distinguished cell classes having distinct positions within the cortical circuit. We analyze circuit models with pyramidal neurons (E) as well as parvalbumin (PV) and somatostatin (SOM) expressing interneurons. We show how, in E – PV – SOM recurrently connected networks, SOM-mediated modulation can lead to simultaneous increases in neuronal gain and network stability. Our work exposes how the impact of a modulation mediated by SOM neurons depends critically on circuit connectivity and the network state.

    1. Genetics and Genomics
    2. Neuroscience
    Martina Rudgalvyte, Zehan Hu ... Dominique A Glauser
    Research Article

    Thermal nociception in Caenorhabditis elegans is regulated by the Ca²+/calmodulin-dependent protein kinase CMK-1, but its downstream effectors have remained unclear. Here, we combined in vitro kinase assays with mass-spectrometry-based phosphoproteomics to identify hundreds of CMK-1 substrates, including the calcineurin A subunit TAX-6, phosphorylated within its conserved regulatory domain. Genetic and pharmacological analyses reveal multiple antagonistic interactions between CMK-1 and calcineurin signaling in modulating both naive thermal responsiveness and adaptation to repeated noxious stimuli. Cell-specific manipulations indicate that CMK-1 acts in AFD and ASER thermo-sensory neurons, while TAX-6 functions in FLP thermo-sensory neurons and downstream interneurons. Since CMK-1 and TAX-6 act in distinct cell types, the phosphorylation observed in vitro might not directly underlie the behavioral phenotype. Instead, the opposing effects seem to arise from their distributed roles within the sensory circuit. Overall, our study provides (1) a resource of candidate CMK-1 targets for further dissecting CaM kinase signaling and (2) evidence of a previously unrecognized, circuit-level antagonism between CMK-1 and calcineurin pathways. These findings highlight a complex interplay of signaling modules that modulate thermal nociception and adaptation, offering new insights into potentially conserved mechanisms that shape nociceptive plasticity and pain (de)sensitization in more complex nervous systems.