Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells

Abstract

The differentiation of naïve CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful anti-viral, and anti-tumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naïve phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7 mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses.

Article and author information

Author details

  1. Alexandria C Wells

    Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Keith A Daniels

    Department of Pathology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Constance C Angelou

    Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric Fagerberg

    Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Amy S Burnside

    Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michele Markstein

    Department of Biology, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dominique Alfandari

    Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0557-1246
  8. Raymond M Welsh

    Department of Pathology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Elena L Pobezinskaya

    Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
    For correspondence
    pobezinskaya@umass.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Leonid A Pobezinsky

    Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
    For correspondence
    lpobezinsky@umass.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6115-3559

Funding

National Multiple Sclerosis Society (PP-1503-03417)

  • Leonid A Pobezinsky

University of Massachusetts Amherst (Start up funds)

  • Leonid A Pobezinsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2014-0045, 2014-0065, 2015-0035) of the University of Massachusetts.

Copyright

© 2017, Wells et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,075
    views
  • 578
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandria C Wells
  2. Keith A Daniels
  3. Constance C Angelou
  4. Eric Fagerberg
  5. Amy S Burnside
  6. Michele Markstein
  7. Dominique Alfandari
  8. Raymond M Welsh
  9. Elena L Pobezinskaya
  10. Leonid A Pobezinsky
(2017)
Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells
eLife 6:e26398.
https://doi.org/10.7554/eLife.26398

Share this article

https://doi.org/10.7554/eLife.26398

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Immunology and Inflammation
    Hong Yu, Hiroshi Nishio ... Drew Pardoll
    Research Article

    The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.