SynEM, automated synapse detection for connectomics

  1. Benedikt Staffler
  2. Manuel Berning
  3. Kevin M Boergens
  4. Anjali Gour
  5. Patrick van der Smagt
  6. Moritz Helmstaedter  Is a corresponding author
  1. Max Planck Institute for Brain Research, Germany
  2. Volkswagen Group, Germany

Abstract

Nerve tissue contains a high density of chemical synapses, about 1 per µm3 in the mammalian cerebral cortex. Thus, even for small blocks of nerve tissue, dense connectomic mapping requires the identification of millions to billions of synapses. While the focus of connectomic data analysis has been on neurite reconstruction, synapse detection becomes limiting when datasets grow in size and dense mapping is required. Here, we report SynEM, a method for automated detection of synapses from conventionally en-bloc stained 3D electron microscopy image stacks. The approach is based on a segmentation of the image data and focuses on classifying borders between neuronal processes as synaptic or non-synaptic. SynEM yields 97% precision and recall in binary cortical connectomes with no user interaction. It scales to large volumes of cortical neuropil, plausibly even whole-brain datasets. SynEM removes the burden of manual synapse annotation for large densely mapped connectomes.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Benedikt Staffler

    Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Manuel Berning

    Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3679-8363
  3. Kevin M Boergens

    Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Anjali Gour

    Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrick van der Smagt

    Data Lab, Volkswagen Group, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Moritz Helmstaedter

    Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
    For correspondence
    mh@brain.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7973-0767

Funding

Max-Planck Society (Open access funding)

  • Benedikt Staffler
  • Manuel Berning
  • Kevin M Boergens
  • Anjali Gour
  • Moritz Helmstaedter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeremy Nathans, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: All animal experiments were performed in accordance with the guidelines for the Use of Laboratory Animals of the Max Planck Society and approved by the local authorities Regierungspräsidium Oberbayern, AZ 55.2-1-54-2532.3-103-12.

Version history

  1. Received: February 28, 2017
  2. Accepted: July 12, 2017
  3. Accepted Manuscript published: July 14, 2017 (version 1)
  4. Version of Record published: October 26, 2017 (version 2)

Copyright

© 2017, Staffler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,840
    views
  • 600
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benedikt Staffler
  2. Manuel Berning
  3. Kevin M Boergens
  4. Anjali Gour
  5. Patrick van der Smagt
  6. Moritz Helmstaedter
(2017)
SynEM, automated synapse detection for connectomics
eLife 6:e26414.
https://doi.org/10.7554/eLife.26414

Share this article

https://doi.org/10.7554/eLife.26414

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.