High mTOR activity is a hallmark of reactive natural killer cells and amplifies early signaling through activating receptors

  1. Antoine Marçais  Is a corresponding author
  2. Marie Marotel
  3. Sophie Degouve
  4. Alice Koenig
  5. Sébastien Fauteux-Daniel
  6. Annabelle Drouillard
  7. Heinrich Schlums
  8. Sébastien Viel
  9. Laurie Besson
  10. Omran Allatif
  11. Mathieu Bléry
  12. Eric Vivier
  13. Yenan Bryceson
  14. Olivier Thaunat
  15. Thierry Walzer  Is a corresponding author
  1. International Center for Infectiology Research (CIRI), France
  2. Karolinska Institutet, Karolinska University Hospital Huddinge, Sweden
  3. Innate Pharma, France
  4. Aix Marseille Université, France

Abstract

NK cell education is the process through which chronic engagement of inhibitory NK cell receptors by self MHC-I molecules preserves cellular responsiveness. The molecular mechanisms responsible for NK cell education remain unclear. Here, we show that mouse NK cell education is associated with a higher basal activity of the mTOR/Akt pathway, commensurate to the number of educating receptors. This higher activity was dependent on the SHP-1 phosphatase and essential for the improved responsiveness of reactive NK cells. Upon stimulation, the mTOR/Akt pathway amplified signaling through activating NK cell receptors by enhancing calcium flux and LFA-1 integrin activation. Pharmacological inhibition of mTOR resulted in a proportional decrease in NK cell reactivity. Reciprocally, acute cytokine stimulation restored reactivity of hyporesponsive NK cells through mTOR activation. These results demonstrate that mTOR acts as a molecular rheostat of NK cell reactivity controlled by educating receptors and uncover how cytokine stimulation overcomes NK cell education.

Article and author information

Author details

  1. Antoine Marçais

    International Center for Infectiology Research (CIRI), Lyon, France
    For correspondence
    antoine.marcais@inserm.fr
    Competing interests
    No competing interests declared.
  2. Marie Marotel

    International Center for Infectiology Research (CIRI), Lyon, France
    Competing interests
    No competing interests declared.
  3. Sophie Degouve

    International Center for Infectiology Research (CIRI), Lyon, France
    Competing interests
    No competing interests declared.
  4. Alice Koenig

    International Center for Infectiology Research (CIRI), Lyon, France
    Competing interests
    No competing interests declared.
  5. Sébastien Fauteux-Daniel

    International Center for Infectiology Research (CIRI), Lyon, France
    Competing interests
    No competing interests declared.
  6. Annabelle Drouillard

    International Center for Infectiology Research (CIRI), Lyon, France
    Competing interests
    No competing interests declared.
  7. Heinrich Schlums

    Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  8. Sébastien Viel

    International Center for Infectiology Research (CIRI), Lyon, France
    Competing interests
    No competing interests declared.
  9. Laurie Besson

    International Center for Infectiology Research (CIRI), Lyon, France
    Competing interests
    No competing interests declared.
  10. Omran Allatif

    International Center for Infectiology Research (CIRI), Lyon, France
    Competing interests
    No competing interests declared.
  11. Mathieu Bléry

    Innate Pharma, Marseille, France
    Competing interests
    Mathieu Bléry, MB is employee of Innate-Pharma.
  12. Eric Vivier

    Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille, France
    Competing interests
    Eric Vivier, EV is shareholder of Innate-Pharma.
  13. Yenan Bryceson

    Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  14. Olivier Thaunat

    International Center for Infectiology Research (CIRI), Lyon, France
    Competing interests
    No competing interests declared.
  15. Thierry Walzer

    International Center for Infectiology Research (CIRI), Lyon, France
    For correspondence
    thierry.walzer@inserm.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0857-8179

Funding

Agence Nationale de la Recherche (ANR-16-CE15-0005-01 Bank)

  • Antoine Marçais

H2020 European Research Council (281025 Dironaki)

  • Thierry Walzer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wayne M Yokoyama, Howard Hughes Medical Institute, Washington University School of Medicine, United States

Ethics

Animal experimentation: This study was carried out in accordance with the French recommendations in the Guide for the ethical evaluation of experiments using laboratory animals and the European guidelines 86/609/CEE. All experimental studies were approved by the bioethic local committee CECCAPP (Permit number: CECCAPP_ENS_2014_018).

Version history

  1. Received: February 28, 2017
  2. Accepted: August 29, 2017
  3. Accepted Manuscript published: September 6, 2017 (version 1)
  4. Version of Record published: October 4, 2017 (version 2)

Copyright

© 2017, Marçais et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,178
    views
  • 742
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antoine Marçais
  2. Marie Marotel
  3. Sophie Degouve
  4. Alice Koenig
  5. Sébastien Fauteux-Daniel
  6. Annabelle Drouillard
  7. Heinrich Schlums
  8. Sébastien Viel
  9. Laurie Besson
  10. Omran Allatif
  11. Mathieu Bléry
  12. Eric Vivier
  13. Yenan Bryceson
  14. Olivier Thaunat
  15. Thierry Walzer
(2017)
High mTOR activity is a hallmark of reactive natural killer cells and amplifies early signaling through activating receptors
eLife 6:e26423.
https://doi.org/10.7554/eLife.26423

Share this article

https://doi.org/10.7554/eLife.26423

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.