Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of Drosophila

  1. Yongjun Qian
  2. Yue Cao
  3. Bowen Deng
  4. Guang Yang
  5. Jiayun Li
  6. Rui Xu
  7. Dandan zhang
  8. Juan Huang  Is a corresponding author
  9. Yi Rao  Is a corresponding author
  1. Peking University, China
  2. Cold Spring Harbor Laboratory, United States
  3. Nanjing Medical University, China

Abstract

Our understanding of molecular mechanisms underlying sleep homeostasis is limited. We have taken a systematic approach to study neural signaling by the transmitter 5-hydroxytryptamine (5-HT) in Drosophila. We have generated knockout and knockin lines for Trh, the 5-HT synthesizing enzyme and all five 5-HT receptors, making it possible for us to determine their expression patterns and to investigate their functional roles. Loss of the Trh, 5HT1a or 5HT2b gene decreased sleep time whereas loss of the Trh or 5HT2b gene diminished sleep rebound after sleep deprivation. 5HT2b expression in a small subset of neurons in the dorsal fan-shaped body (dFB) is functionally essential: elimination of the 5HT2b gene from these neurons led to loss of sleep homeostasis. Genetic ablation of 5HT2b neurons in the dFB decreased sleep and impaired sleep homeostasis. Our results have shown that serotonergic signaling in specific neurons is required for regulating sleep homeostasis.

Article and author information

Author details

  1. Yongjun Qian

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yue Cao

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Bowen Deng

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Guang Yang

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiayun Li

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rui Xu

    School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Dandan zhang

    School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Juan Huang

    School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
    For correspondence
    huangjuan@njmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Yi Rao

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    For correspondence
    yrao@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0405-5426

Funding

National Natural Science Foundation of China (Project 31421003)

  • Yi Rao

National Natural Science Foundation of China (Project 31000547)

  • Juan Huang

Beijing Municipal Natural Science Foundation (Z111107067311058)

  • Yi Rao

Beijing Municpal Natural Science Foundation (Z151100003915121)

  • Yi Rao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Amita Sehgal, Howard Hughes Medical Institute, University of Pennsylvania, United States

Version history

  1. Received: March 7, 2017
  2. Accepted: October 5, 2017
  3. Accepted Manuscript published: October 6, 2017 (version 1)
  4. Version of Record published: October 19, 2017 (version 2)

Copyright

© 2017, Qian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,885
    views
  • 972
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yongjun Qian
  2. Yue Cao
  3. Bowen Deng
  4. Guang Yang
  5. Jiayun Li
  6. Rui Xu
  7. Dandan zhang
  8. Juan Huang
  9. Yi Rao
(2017)
Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of Drosophila
eLife 6:e26519.
https://doi.org/10.7554/eLife.26519

Share this article

https://doi.org/10.7554/eLife.26519

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Neuroscience
    Katharina Eichler, Stefanie Hampel ... Andrew M Seeds
    Research Advance

    Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.