1. Neuroscience
Download icon

Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of Drosophila

  1. Yongjun Qian
  2. Yue Cao
  3. Bowen Deng
  4. Guang Yang
  5. Jiayun Li
  6. Rui Xu
  7. Dandan zhang
  8. Juan Huang  Is a corresponding author
  9. Yi Rao  Is a corresponding author
  1. Peking University, China
  2. Cold Spring Harbor Laboratory, United States
  3. Nanjing Medical University, China
Research Article
  • Cited 35
  • Views 4,429
  • Annotations
Cite this article as: eLife 2017;6:e26519 doi: 10.7554/eLife.26519

Abstract

Our understanding of molecular mechanisms underlying sleep homeostasis is limited. We have taken a systematic approach to study neural signaling by the transmitter 5-hydroxytryptamine (5-HT) in Drosophila. We have generated knockout and knockin lines for Trh, the 5-HT synthesizing enzyme and all five 5-HT receptors, making it possible for us to determine their expression patterns and to investigate their functional roles. Loss of the Trh, 5HT1a or 5HT2b gene decreased sleep time whereas loss of the Trh or 5HT2b gene diminished sleep rebound after sleep deprivation. 5HT2b expression in a small subset of neurons in the dorsal fan-shaped body (dFB) is functionally essential: elimination of the 5HT2b gene from these neurons led to loss of sleep homeostasis. Genetic ablation of 5HT2b neurons in the dFB decreased sleep and impaired sleep homeostasis. Our results have shown that serotonergic signaling in specific neurons is required for regulating sleep homeostasis.

Article and author information

Author details

  1. Yongjun Qian

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yue Cao

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Bowen Deng

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Guang Yang

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiayun Li

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rui Xu

    School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Dandan zhang

    School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Juan Huang

    School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
    For correspondence
    huangjuan@njmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Yi Rao

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    For correspondence
    yrao@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0405-5426

Funding

National Natural Science Foundation of China (Project 31421003)

  • Yi Rao

National Natural Science Foundation of China (Project 31000547)

  • Juan Huang

Beijing Municipal Natural Science Foundation (Z111107067311058)

  • Yi Rao

Beijing Municpal Natural Science Foundation (Z151100003915121)

  • Yi Rao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Amita Sehgal, Howard Hughes Medical Institute, University of Pennsylvania, United States

Publication history

  1. Received: March 7, 2017
  2. Accepted: October 5, 2017
  3. Accepted Manuscript published: October 6, 2017 (version 1)
  4. Version of Record published: October 19, 2017 (version 2)

Copyright

© 2017, Qian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,429
    Page views
  • 822
    Downloads
  • 35
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Domenica Ippolito et al.
    Research Article Updated

    Sensory and behavioral plasticity are essential for animals to thrive in changing environments. As key effectors of intracellular calcium signaling, Ca2+/calmodulin-dependent protein kinases (CaMKs) can bridge neural activation with the many regulatory processes needed to orchestrate sensory adaptation, including by relaying signals to the nucleus. Here, we elucidate the molecular mechanism controlling the cell activation-dependent nuclear translocation of CMK-1, the Caenorhabditis elegans ortholog of mammalian CaMKI/IV, in thermosensory neurons in vivo. We show that an intracellular Ca2+ concentration elevation is necessary and sufficient to favor CMK-1 nuclear import. The binding of Ca2+/CaM to CMK-1 increases its affinity for IMA-3 importin, causing a redistribution with a relatively slow kinetics, matching the timescale of sensory adaptation. Furthermore, we show that this mechanism enables the encoding of opposite nuclear signals in neuron types with opposite calcium-responses and that it is essential for experience-dependent behavioral plasticity and gene transcription control in vivo. Since CaMKI/IV are conserved regulators of adaptable behaviors, similar mechanisms could exist in other organisms and for other sensory modalities.

    1. Evolutionary Biology
    2. Neuroscience
    Jan Clemens et al.
    Research Article Updated

    How neural networks evolved to generate the diversity of species-specific communication signals is unknown. For receivers of the signals, one hypothesis is that novel recognition phenotypes arise from parameter variation in computationally flexible feature detection networks. We test this hypothesis in crickets, where males generate and females recognize the mating songs with a species-specific pulse pattern, by investigating whether the song recognition network in the cricket brain has the computational flexibility to recognize different temporal features. Using electrophysiological recordings from the network that recognizes crucial properties of the pulse pattern on the short timescale in the cricket Gryllus bimaculatus, we built a computational model that reproduces the neuronal and behavioral tuning of that species. An analysis of the model’s parameter space reveals that the network can provide all recognition phenotypes for pulse duration and pause known in crickets and even other insects. Phenotypic diversity in the model is consistent with known preference types in crickets and other insects, and arises from computations that likely evolved to increase energy efficiency and robustness of pattern recognition. The model’s parameter to phenotype mapping is degenerate – different network parameters can create similar changes in the phenotype – which likely supports evolutionary plasticity. Our study suggests that computationally flexible networks underlie the diverse pattern recognition phenotypes, and we reveal network properties that constrain and support behavioral diversity.