Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations

  1. Karthik Hullahalli
  2. Marinelle Rodrigues
  3. Kelli L Palmer  Is a corresponding author
  1. The University of Texas at Dallas, United States

Abstract

CRISPR-Cas provides a barrier to horizontal gene transfer in prokaryotes. It was previously observed that functional CRISPR-Cas systems are absent from multidrug-resistant (MDR) Enterococcus faecalis, which only possess an orphan CRISPR locus, termed CRISPR2, lacking cas genes. It was of interest to investigate how the interplay between CRISPR-Cas genome defense and antibiotic selection for mobile genetic elements shapes E. faecalis populations. Here, we demonstrate that CRISPR2 can be reactivated for genome defense in MDR strains. Interestingly, we observe that E. faecalis transiently maintains CRISPR targets despite active CRISPR-Cas systems. Subsequently, if selection for the CRISPR target is present, toxic CRISPR spacers are lost over time, while in the absence of selection, CRISPR targets are lost over time. We find that forced maintenance of CRISPR targets induces a fitness cost that can be exploited to alter heterogeneous E. faecalis populations.

Article and author information

Author details

  1. Karthik Hullahalli

    Department of Biological Sciences, The University of Texas at Dallas, Richardson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marinelle Rodrigues

    Department of Biological Sciences, The University of Texas at Dallas, Richardson, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kelli L Palmer

    Department of Biological Sciences, The University of Texas at Dallas, Richardson, United States
    For correspondence
    kelli.palmer@utdallas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7343-9271

Funding

National Institutes of Health (R01 AI116610)

  • Kelli L Palmer

American Society for Microbiology (Undergraduate Research Fellowship)

  • Karthik Hullahalli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael S Gilmore, Harvard Medical School, United States

Publication history

  1. Received: March 9, 2017
  2. Accepted: June 15, 2017
  3. Accepted Manuscript published: June 23, 2017 (version 1)
  4. Version of Record published: June 29, 2017 (version 2)

Copyright

© 2017, Hullahalli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,160
    Page views
  • 423
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karthik Hullahalli
  2. Marinelle Rodrigues
  3. Kelli L Palmer
(2017)
Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations
eLife 6:e26664.
https://doi.org/10.7554/eLife.26664

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ceri Alan Fielding et al.
    Research Article Updated

    The outcome of infection is dependent on the ability of viruses to manipulate the infected cell to evade immunity, and the ability of the immune response to overcome this evasion. Understanding this process is key to understanding pathogenesis, genetic risk factors, and both natural and vaccine-induced immunity. SARS-CoV-2 antagonises the innate interferon response, but whether it manipulates innate cellular immunity is unclear. An unbiased proteomic analysis determined how cell surface protein expression is altered on SARS-CoV-2-infected lung epithelial cells, showing downregulation of activating NK ligands B7-H6, MICA, ULBP2, and Nectin1, with minimal effects on MHC-I. This occurred at the level of protein synthesis, could be mediated by Nsp1 and Nsp14, and correlated with a reduction in NK cell activation. This identifies a novel mechanism by which SARS-CoV-2 host-shutoff antagonises innate immunity. Later in the disease process, strong antibody-dependent NK cell activation (ADNKA) developed. These responses were sustained for at least 6 months in most patients, and led to high levels of pro-inflammatory cytokine production. Depletion of spike-specific antibodies confirmed their dominant role in neutralisation, but these antibodies played only a minor role in ADNKA compared to antibodies to other proteins, including ORF3a, Membrane, and Nucleocapsid. In contrast, ADNKA induced following vaccination was focussed solely on spike, was weaker than ADNKA following natural infection, and was not boosted by the second dose. These insights have important implications for understanding disease progression, vaccine efficacy, and vaccine design.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Atanas Radkov et al.
    Research Article

    Members of the bacterial T6SS amidase effector (Tae) superfamily of toxins are delivered between competing bacteria to degrade cell wall peptidoglycan. Although Taes share a common substrate, they exhibit distinct antimicrobial potency across different competitor species. To investigate the molecular basis governing these differences, we quantitatively defined the functional determinants of Tae1 from Pseudomonas aeruginosa PAO1 using a combination of nuclear magnetic resonance (NMR) and a high-throughput in vivo genetic approach called deep mutational scanning (DMS). As expected, combined analyses confirmed the role of critical residues near the Tae1 catalytic center. Unexpectedly, DMS revealed substantial contributions to enzymatic activity from a much larger, ring-like functional hot spot extending around the entire circumference of the enzyme. Comparative DMS across distinct growth conditions highlighted how functional contribution of different surfaces is highly context-dependent, varying alongside composition of targeted cell walls. These observations suggest that Tae1 engages with the intact cell wall network through a more distributed three-dimensional interaction interface than previously appreciated, providing an explanation for observed differences in antimicrobial potency across divergent Gram-negative competitors. Further binding studies of several Tae1 variants with their cognate immunity protein demonstrate that requirements to maintain protection from Tae activity may be a significant constraint on the mutational landscape of tae1 toxicity in the wild. In total, our work reveals that Tae diversification has likely been shaped by multiple independent pressures to maintain interactions with binding partners that vary across bacterial species and conditions.