Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders

  1. Cian O'Donnell  Is a corresponding author
  2. J Tiago Gonçalves
  3. Carlos Portera-Cailliau
  4. Terrence J Sejnowski  Is a corresponding author
  1. University of Bristol, United Kingdom
  2. Albert Einstein College of Medicine, United States
  3. University of California, Los Angeles, United States
  4. Howard Hughes Medical Institute, Salk Institute for Biological Studies, United States

Abstract

A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here we combined computational simulations with analysis of in vivo 2-photon Ca2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: 1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; 2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; 3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher-dimensional models that can better capture the multidimensional computational functions of neural circuits.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Cian O'Donnell

    Department of Computer Science, University of Bristol, Bristol, United Kingdom
    For correspondence
    cian.odonnell@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2031-9177
  2. J Tiago Gonçalves

    Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Carlos Portera-Cailliau

    Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Terrence J Sejnowski

    Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    terry@salk.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0622-7391

Funding

FRAXA Research Foundation (Postdoctoral fellowship)

  • Cian O'Donnell

Howard Hughes Medical Institute

  • Cian O'Donnell
  • Terrence J Sejnowski

Sloan-Swartz

  • Cian O'Donnell
  • Terrence J Sejnowski

Dana Foundation

  • J Tiago Gonçalves
  • Carlos Portera-Cailliau

John Merck Fund (20160969)

  • Carlos Portera-Cailliau

Simons Foundation (295438)

  • Carlos Portera-Cailliau

National Institute of Neurological Disorders and Stroke (RC1NS068093)

  • J Tiago Gonçalves
  • Carlos Portera-Cailliau

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD054453)

  • J Tiago Gonçalves
  • Carlos Portera-Cailliau

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted according the US National Institutes of Health guidelines for animal research, under an animal protocol (ARC#2007-035) approved by the Chancellor's Animal Research Committee and the Office for the Protection of Research Subjects at the University of California, Los Angeles.

Copyright

© 2017, O'Donnell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,505
    views
  • 1,114
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cian O'Donnell
  2. J Tiago Gonçalves
  3. Carlos Portera-Cailliau
  4. Terrence J Sejnowski
(2017)
Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders
eLife 6:e26724.
https://doi.org/10.7554/eLife.26724

Share this article

https://doi.org/10.7554/eLife.26724

Further reading

    1. Neuroscience
    Jakob Rupert, Dragomir Milovanovic
    Insight

    By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.