Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers

  1. Ganesh V Raj  Is a corresponding author
  2. Gangadhara Reddy Sareddy
  3. Shihong Ma
  4. Tae-Kyung Lee
  5. Suryavathi Viswanadhapalli
  6. Rui Li
  7. Xihui Liu
  8. Shino Murakami
  9. Chien-Cheng Chen
  10. Wan-Ru Lee
  11. Monica Mann
  12. Samaya Rajeshwari Krishnan
  13. Bikash Manandhar
  14. Vijay K Gonugunta
  15. Douglas Strand
  16. Rajeshwar Rao Tekmal
  17. Jung-Mo Ahn
  18. Ratna K Vadlamudi  Is a corresponding author
  1. University of Texas Southwestern Medical Center at Dallas, United States
  2. University of Texas Health Science Center, United States
  3. University of Texas Health Cancer Center, United States
  4. University of Texas at Dallas, United States
  5. University of Texas Southwestern Medical Center, United States
52 figures and 7 tables

Figures

Figure 1 with 3 supplements
Derivation and characterization of ERX-11.

Structure of ERX-11, as a derivative of the D2 peptidomimetic with a hydroxyethyl moiety in the flanking position to mimic a Serine (A, left panel). Effect of 500 nM of each peptidomimetic on the …

https://doi.org/10.7554/eLife.26857.003
Figure 1—figure supplement 1
Derivation of the α-helix mimetic ERX-11 and structural design, synthesis and activity of the α-helix mimetic.

(A) String analyses depicting the interactome of PELP1, especially with ER and AR using string-db.org software v 10.4. (B) Effect of increasing concentrations of D1 and D2 peptidomimetic on the cell …

https://doi.org/10.7554/eLife.26857.004
Figure 1—figure supplement 2
Characterization of ERX-11 activity.

(A) The lowest energy conformation of ERX-11 (left), Superimposition of the energy-minimized ERX-11 (green) on an α-helix (orange) (middle) and an α-helical LXXLL motif containing a Ser at its …

https://doi.org/10.7554/eLife.26857.005
Figure 1—figure supplement 3
Derivation of the α-helix mimetic ERX-11 and synthesis of tris-benzamide peptidomimetics.

(A) Synthesis of 3-alkoxy-4-nitrobenzoic acids. (B) Solid-phase synthesis of tris-benzamdies (Reagents and conditions: (a) 3d, HATU, DIEA, DMF, rt, 24 hr; (b) SnCl2⋅2H2O, AcOH/HCl/THF, rt, 24 hr; (c)…

https://doi.org/10.7554/eLife.26857.006
Figure 2 with 7 supplements
ERX-11 interacts with ER and blocks its interactome.

Interaction with endogenous ER was evaluated in nuclear lysates prepared from ZR-75 cells stimulated with E2, incubated with biotin-control or biotin-ERX-11 and analyzed by avidin pull-down assay (A)…

https://doi.org/10.7554/eLife.26857.007
Figure 2—figure supplement 1
Pathways analysis in terms of either biological processes or molecular functions revealed that ERX-11-binding proteins were involved in the activation of multiple pathways leading to transcriptional regulation.
https://doi.org/10.7554/eLife.26857.008
Figure 2—figure supplement 2
Characterization of ERX-11 interactions with ER.

(A) Nuclear lysates from E2-stimulated MCF-7 cells treated with vehicle or ERX-11 were subjected to immunoprecipitation with ER antibody. The immunoprecipates were analyzed by mass spectroscopy. The …

https://doi.org/10.7554/eLife.26857.009
Figure 2—figure supplement 3
Analyses of the ER-binding proteins blocked by ERX-11 or Tamoxifen.
https://doi.org/10.7554/eLife.26857.010
Figure 2—figure supplement 4
Effect of ERX-11 on inhibition of ER -coregulators interactions.

(A) Quantification of the effect of ERX-11 on the proximity ligation between ER and PELP1 or SRC1 or SRC3 in MCF-7 and ZR-75 cells. (B) Quantification of the effect of ERX-11 on the proximity …

https://doi.org/10.7554/eLife.26857.011
Figure 2—figure supplement 5
Effect of SERDs or tamoxifen on ERX-11 interactions with ER.

(A) Effect of 1 μM of a SERD, GDC-0810, on the ability of ERX-11 to pulldown ER in MDA-MB-231 cells stably transfected with WT-ER, L540Q ER or ▲12 ER. Input is shown on the right. (B) Effect of 1 μM …

https://doi.org/10.7554/eLife.26857.012
Figure 2—figure supplement 6
Models showing the putative interactions of ERX-11 with residues in the ER protein.

(A) Docking studies of ERX-11 on different ER crystal structures shows that ERX-11 (green) can interact with ER, either in the presence of agonist diethylstilbesterol (red) (A: 3ERD.pdb), an …

https://doi.org/10.7554/eLife.26857.013
Figure 2—figure supplement 7
Model describing interaction between ER (purple) and ERX-11 (green) in presence of agonist (yellow) (A), SERD (orange) (B) or tamoxifen (red)(C).

Note that in the presence of tamoxifen, ERX-11 binds to a secondary weaker affinity site on ER. Similarly, the interaction between ER▲12 (blue) and ERX-11 is modeled in the absence of agonist (D), …

https://doi.org/10.7554/eLife.26857.014
Figure 3 with 1 supplement
ERX-11 globally disrupts ER-mediated transcriptome.

Total RNA was isolated from the ZR-75 cells that were treated with either vehicle or ERX-11 for 48 hr and subjected to RNA sequencing. The heat map of differentially expressed genes between vehicle …

https://doi.org/10.7554/eLife.26857.018
Figure 3—figure supplement 1
ERX-11 treatment has potential to promote apoptosis.

(A) Volcano plot of statistical significance (adjusted p value) against RPKM fold-change (FC) between vehicle and ERX-11 treated ZR-75 cells. Only significantly changed genes (p<0.01 and FC > 1.5) …

https://doi.org/10.7554/eLife.26857.019
Figure 4 with 1 supplement
ERX-11 affects ER ligand-dependent and independent transcriptional activity.

ZR-75 cells stably transfected with ER and ERE-Luc vectors were treated with E2 (10−8M) in the presence of indicated concentrations of ERX-11 or tamoxifen. After 24 hr, the reporter gene activity …

https://doi.org/10.7554/eLife.26857.020
Figure 4—figure supplement 1
Effect of ERX-11 on AR functions, E2 mediated non-genomic actions and ER stability.

(A) Evaluation of the effect of ERX-11 on AR DNA binding to its target sequences. (B) The effect of ERX-11 on AR dimerization as evaluated by the NanoBiT luciferase assay. (C) Evaluation of the …

https://doi.org/10.7554/eLife.26857.021
Figure 5 with 2 supplements
ERX-11 inhibits the growth of ER-positive, syngeneic and coregulator-driven breast tumors in vivo.

ER-positive ZR-75 cells were injected into the mammary fat pads of nude mice implanted subcutaneously with E2 pellet. After 2 weeks, mice with xenografts were treated with vehicle or 10 mg/kg/day of …

https://doi.org/10.7554/eLife.26857.022
Figure 5—figure supplement 1
Characterization of ERX-11 treated tumors.

(A) Body weights of mice implanted with ZR-75 xenograft tumors treated with vehicle or ERX-11. (B) Characterization of D2A1 model cells: (A) Western blot analysis of D2A1 cell lysates. Murine …

https://doi.org/10.7554/eLife.26857.023
Figure 5—figure supplement 2
Normal tissues collected from mice that were treated with vehicle or ERX-11 were examined for toxicity.

(A) Effect of ERX-11 on various tissues as seen by H and E. (B) Effect of ERX-11 on Ki67 staining. (C) Effect of ERX-11 on Ki67 with quantitation. (D) Effect of ERX-11 on ER staining in the ovary.

https://doi.org/10.7554/eLife.26857.024
Figure 6 with 1 supplement
ERX-11 reduces the growth of ER positive and ER-MT endocrine-therapy-resistant tumors.

Cell viability assays evaluated the effect of ERX-11 on Tamoxifen-resistant MCF-7-TamR cells (A), tamoxifen-resistant MCF-7/HER2 cells (B) and letrozole-resistant MCF-7-LTLT cells (C). ICI was used …

https://doi.org/10.7554/eLife.26857.025
Figure 6—figure supplement 1
ERX-11 reduces the growth of ER-positive and ER-MT endocrine-therapy-resistant tumors.

(A) MCF-7-LTLT xenografts were treated with vehicle or ERX-11 or Fulvestrant. Tumor volume, tumor weights and body weights are shown****p<0.0001. (B) MCF-7-LTLT tumors treated with or without ERX-11 …

https://doi.org/10.7554/eLife.26857.026
Figure 7 with 1 supplement
ERX-11 decreases the growth of patient-derived explants (PDEx): Schematic representation of ex vivo culture model is shown.

(A) The explants were treated with ERX-11 for 48 hr. Effect of ERX-11 on Ki67 expression in ER-positive tumors with representative sections from three individual tumors and overall trend are shown (B

https://doi.org/10.7554/eLife.26857.027
Figure 7—figure supplement 1
Effect of ERX-11 treatment on the status of ER.

Effect of ERX-11 treatment on ER + PR + patient-derived explants from three individual patients, as assessed by Ki67, ER and PELP1 immunohistochemistry.

https://doi.org/10.7554/eLife.26857.028
Appendix 1—chemical structure 1
Compound 3a.
https://doi.org/10.7554/eLife.26857.032
Appendix 1—chemical structure 2
Compound 3b.
https://doi.org/10.7554/eLife.26857.033
Appendix 1—chemical structure 3
Compound 3c.
https://doi.org/10.7554/eLife.26857.034
Appendix 1—chemical structure 4
Compound 3d.
https://doi.org/10.7554/eLife.26857.035
Appendix 1—chemical structure 5
Compound 3e.
https://doi.org/10.7554/eLife.26857.036
Appendix 1—chemical structure 6
Compound 3f.
https://doi.org/10.7554/eLife.26857.037
Appendix 1—chemical structure 7
Compound 3g.
https://doi.org/10.7554/eLife.26857.038
Appendix 1—chemical structure 8
Compound 3i.
https://doi.org/10.7554/eLife.26857.039
Appendix 1—chemical structure 13
ERX-13.
https://doi.org/10.7554/eLife.26857.044
Appendix 1—chemical structure 14
ERX-10.
https://doi.org/10.7554/eLife.26857.045
Appendix 1—chemical structure 15
ERX-12.
https://doi.org/10.7554/eLife.26857.046
Appendix 1—chemical structure 16
Compound 8.
https://doi.org/10.7554/eLife.26857.047
Appendix 1—chemical structure 17
Compound 9.
https://doi.org/10.7554/eLife.26857.048
Appendix 1—chemical structure 18
ERX-11.
https://doi.org/10.7554/eLife.26857.049
Appendix 1—chemical structure 19
Compound 10.
https://doi.org/10.7554/eLife.26857.050
Appendix 1—chemical structure 20
Compound 11.
https://doi.org/10.7554/eLife.26857.051
Appendix 1—chemical structure 21
Compound 12.
https://doi.org/10.7554/eLife.26857.052
Appendix 1—chemical structure 22
ERX-11-biotin.
https://doi.org/10.7554/eLife.26857.053
Appendix 1—figure 1
1H and 13C NMR of compound 3a.
https://doi.org/10.7554/eLife.26857.055
Appendix 1—figure 2
1H and 13C NMR of compound 3b.
https://doi.org/10.7554/eLife.26857.056
Appendix 1—figure 3
1H and 13C NMR of compound 3c.
https://doi.org/10.7554/eLife.26857.057
Appendix 1—figure 4
1H and 13C NMR of compound 3e.
https://doi.org/10.7554/eLife.26857.058
Appendix 1—figure 5
1H and 13C NMR of compound 3 f.
https://doi.org/10.7554/eLife.26857.059
Appendix 1—figure 6
1H and 13C NMR of compound 3 g.
https://doi.org/10.7554/eLife.26857.060
Appendix 1—figure 7
1H and 13C NMR of compound 3i.
https://doi.org/10.7554/eLife.26857.061
Appendix 1—figure 8
1H and 13C NMR of ERX-5.
https://doi.org/10.7554/eLife.26857.062
Appendix 1—figure 9
1H and 13C NMR of ERX-7.
https://doi.org/10.7554/eLife.26857.063
Appendix 1—figure 10
1H and 13C NMR of ERX-8.
https://doi.org/10.7554/eLife.26857.064
Appendix 1—figure 11
1H and 13C NMR of ERX-9.
https://doi.org/10.7554/eLife.26857.065
Appendix 1—figure 12
1H and 13C NMR of ERX-10.
https://doi.org/10.7554/eLife.26857.066
Appendix 1—figure 13
1H and 13C NMR of ERX-12.
https://doi.org/10.7554/eLife.26857.067
Appendix 1—figure 14
1H and 13C NMR of ERX-13.
https://doi.org/10.7554/eLife.26857.068
Appendix 1—figure 15
1H and 13C NMR of compound 9.
https://doi.org/10.7554/eLife.26857.069
Appendix 1—figure 16
1H and 13C NMR of ERX-11.
https://doi.org/10.7554/eLife.26857.070
Appendix 1—figure 17
1H and 13C NMR of compound 11.
https://doi.org/10.7554/eLife.26857.071
Appendix 1—figure 18
1H NMR of compound 12.
https://doi.org/10.7554/eLife.26857.072
Appendix 1—figure 19
1H and 13C NMR of compound ERX-11-biotin.
https://doi.org/10.7554/eLife.26857.073
Appendix 1—figure 20
Characterization of SRC1-LXXLL peptide.

(a) HPLC chromatogram of SRC1-LXXLL peptide. (b) MALDI-TOF of SRC1-LXXLL peptide.

https://doi.org/10.7554/eLife.26857.074
Appendix 1—figure 21
Characterization of SRC2-LXXLL peptide.

(a) HPLC chromatogram of SRC2-LXXLL peptide. (b) MALDI-TOF of SRC2-LXXLL peptide.

https://doi.org/10.7554/eLife.26857.075
Appendix 1—figure 22
Characterization of AIB1-LXXLL peptide.

(a) HPLC chromatogram of AIB1-LXXLL peptide. (b) MALDI-TOF of AIB1-LXXLL peptide.

https://doi.org/10.7554/eLife.26857.076
Appendix 1—figure 23
Characterization of PELP1-LXXLL peptide.

(a) HPLC chromatogram of PELP1-LXXLL peptide. (b) MALDI-TOF of PELP1-LXXLL peptide.

https://doi.org/10.7554/eLife.26857.077

Tables

Table 1

Top proteins pulled down by biotinylated ERX-11 in MCF-7 cells, as identified by IP-MS. The column marked E2 represents spectral counts for the protein bound to biotinylated control eluted from …

https://doi.org/10.7554/eLife.26857.015
ProteinDescriptionLength (AA)Mw (Da)PSMsPeptide seqs% CoverageE2E2 + ERX-11E2 +
ERX-11/E2
 P38117ETFB_HUMAN Electron transfer flavoprotein subunit beta OS = Homo sapiens GN = ETFB PE = 1 SV = 325537501.1012734.1017.005.00
 Q96PZ0PUS7_HUMAN Pseudouridylate synthase seven homolog OS = Homo sapiens GN = PUS7 PE = 1 SV = 266175186.30201426.301.007.9810.99
 O953366 PGL_HUMAN 6-phosphogluconolactonase OS = Homo sapiens GN = PGLS PE = 1 SV = 225827601.6013841.500.996.006.04
 Q8TD06AGR3_HUMAN Anterior gradient protein three homolog OS = Homo sapiens GN = AGR3 PE = 1 SV = 116619194.9014947.000.995.967.03
 P18754RCC1_HUMAN Regulator of chromosome condensation OS = Homo sapiens GN = RCC1 PE = 1 SV = 142148241.20271355.301.9911.927.00
 O60506HNRPQ_HUMAN Heterogeneous nuclear ribonucleoprotein Q OS = Homo sapiens GN = SYNCRIP PE = 1 SV = 262369739.70202048.501.9710.823.50
 P03372ESR1_HUMAN Estrogen receptor OS = Homo sapiens GN = ESR1 PE = 1 SV = 259566335.20361530.801.839.885.93
 E9PCR7E9PCR7_HUMAN 2-oxoglutarate dehydrogenase, mitochondrial OS = Homo sapiens GN = OGDH PE = 2 SV = 11038115728.00392532.803.9818.884.00
 O43488ARK72_HUMAN Aflatoxin B1 aldehyde reductase member 2 OS = Homo sapiens GN = AKR7A2 PE = 1 SV = 335939653.80221139.801.998.965.51
 O95994AGR2_HUMAN Anterior gradient protein two homolog OS = Homo sapiens GN = AGR2 PE = 1 SV = 117522277.70291265.702.9711.924.68
 P19338NUCL_HUMAN Nucleolin OS = Homo sapiens GN = NCL PE = 1 SV = 371076766.50993548.0014.0050.982.43
 O43148MCES_HUMAN mRNA cap guanine-N7 methyltransferase OS = Homo sapiens GN = RNMT PE = 1 SV = 147657831.9016929.401.996.973.50
 Q562R1ACTBL_HUMAN Beta-actin-like protein 2 OS = Homo sapiens GN = ACTBL2 PE = 1 SV = 237642084.00141439.102.007.003.00
 Q9Y5A9YTHD2_HUMAN YTH domain family protein 2 OS = Homo sapiens GN = YTHDF2 PE = 1 SV = 257962457.80151223.102.006.993.00
 P16152CBR1_HUMAN Carbonyl reductase [NADPH] 1 OS = Homo sapiens GN = CBR1 PE = 1 SV = 327730427.90201156.702.999.982.33
 Q9UBS4DJB11_HUMAN DnaJ homolog subfamily B member 11 OS = Homo sapiens GN = DNAJB11 PE = 1 SV = 135840578.70211235.203.0010.002.67
Table 2

Top biological processes of coregulators, whose interactions with ER are disrupted by ERX-11 in MCF-7 cells.

https://doi.org/10.7554/eLife.26857.016
Biology processesGenes
RNA processingCD2BP2 CHERP CPSF1 CPSF2 CPSF3L CSTF3 DDX17 DDX20DDX23 DHX15 DHX9 DKC1 GEMIN5 HNRNPA3 HNRNPK HNRNPLL HNRNPLL HNRNPR INTS2 INTS4 INTS5 NCBP1 PCF11 POLR2A PPP2R1A PRPF31 PRPF40a PUF60 RBM10 RBM14 SART1 SF1 SF3A3 SF3B1 SF3B3 Sfrs15 SKIV2L2 SMC1A SRRM1 SSB SYNCRIP THOC2 TRNT1 U2AF2 XRN2 ZCCHC8
TranscriptionADNP CCNL1 CSDA CTNND2 DIDO1 DMAP1 EIF2S2 ERCC2 FOXA1 GTF2I GTF3C1 GTF3C KDM3B KDM5B LRPPRC MCM2 MED1 MED24 NCOA3 PELP1 POLR2A POLR3C PSIP1 PUF60 RBM14 RFX1 SAP130 SF1 SMARCA2 SMARCA4 SMARCC2 SMARCD2 THRAP3 Th1l TRIM33 UHRF1 XRN2 ZBTB7A ZMYM2 ZNF217 ZNF512B
Protein transport, protein localizationAP2A2 CLTC COG1 COG3 COG5 COG8 COPB1 COPB2 COPG2 CSE1L EXOC2 EXOC3 EXOC4 EXOC5 EXOC8 IPO4 KPNA4 KPNB1 NUP153 NUP155 NUP93 RANBP2 SEC16A SEC23A SEC24B SEC24C SRP72 STXBP2 TNPO1 TRAM1 TRNT1 VCP VPS11 VPS18 VPS39
RNA splicingCD2BP2 CPSF1 CPSF2 CSTF3 DDX20 DDX23 DHX15 DHX9
GEMIN5 HNRNPA3 HNRNPL HNRNPR LUC7L3 NCBP1 PCF11 POLR2A PPP2R1A PRPF31 PRPF40A PUF60 RBM10 SART1 SF1 SF3A3 SF3B1 SF3B3 SKIV2L2 SMC1A SRRM1 SYNCRIP THOC2 U2AF2 ZCCHC8
Macromolecular complex subunit organizationCSE1L DARS DDX20 DDX23 EPRS ERCC2 FKBP4 GEMIN5 GTF2I GTF3C4 HSP90AA1 IPO4 KPNB1 LONP1 MCM2 MED1 MED24 NCBP1 PFKL PFKM PFKP POLR2A PPP2R1A PREX1 PRPF31 SF1 SF3A3 SF3B3 THRAP3 TNPO1 TUBA1B TUBB VCP XRN2
Cell cycleCUL1 CUL2 CUL3 CUL4B Dmc1 DNM2 DYNC1H1 EIF4G2 LIG3 MCM2 MRE11A NUMA1 PDS5B PHGDH PPP3CA PSMC1 PSMC4 PSMD3 PSMD5 RAD50 SART1 SF1 SMC1A SMC3 SMC4 TUBB UHRF1
Chromosome organizationPDS5B KDM5B RBM14 RAD50 MRE11A CHD1L DMAP1 DKC1 EP400 KDM3B MCM2 SAP130 SMC1A SMC3 SMC4 SMCHD1 SMARCA2 SMARCA4 SMARCC2 SMARCD2
Regulation of cell deathACTN1 ADNP CSDA CUL1 CUL2 CUL3 DDX20 DNM2 ERCC2 PPP2R1A PREX1 SART1 SCRIB TUBB UACA VCP
Table 3

Selected pathways modulated by ERX-11 treatment. Differentially expressed genes were subjected to pathway analysis using IPA software and the selected top canonical pathways modulated by ERX-11 are …

https://doi.org/10.7554/eLife.26857.017
Pathwayp-ValueRatioGenes
 Retinoic-acid-Mediated Apoptosis Signaling2.44E + 001.25E-01PARP12,ZC3HAV1,TNFSF10,PARP9,PARP14,CRABP2,RARG,CRABP1
 ERK/MAPK Signaling1.77E + 007.49E-02SRC,MKNK2,PLA2G4F,DUSP2,BAD,ELF5,PPM1J,PPP1R14B,STAT1,RAC3,ELF4,PPP2R1A,RRAS,RPS6KA4
 Cyclins and Cell Cycle Regulation1.46E + 008.97E-02HDAC5,TGFB1,PPM1J,PPP2R1A,E2F1,HDAC11,HDAC7
 Death Receptor Signaling1.53E + 008.70E-02PARP12,ACTG1,ZC3HAV1,LIMK1,TNFSF10,PARP9,PARP14,BIRC3
 Inhibition of Matrix Metalloproteases2.40E + 001.54E-01HSPG2,MMP10,TIMP1,MMP13,MMP15,SDC1
 Estrogen Receptor Signaling1.19E + 007.09E-02KAT2B,ERCC2,SRC,G6PC3,TAF6,MED24,TAF6L,RRAS,MED15
 Breast Cancer Regulation by Stathmin14.63E-014.71E-02ADCY1,ARHGEF19,PPM1J,PPP1R14B,LIMK1,PPP2R1A,E2F1,TUBA4A,RRAS
Table 4

Clinicopathologic characteristics of the 12 patients, whose ER+, PR + status in breast tumors were analyzed by Ki67 and ER staining. This data is related to Figure 7B,C.

https://doi.org/10.7554/eLife.26857.029
Case #TumorER%PR%HER2
 1IDC10080Negative
 2IDC9090Negative
 3Papillary10070Non-amplified
 4IDC9090Negative
 5IDC10095Non-amplified
 6IDC10030Negative
 7IDC10010–40Negative
 8IDC8050Negative
 9IDC50–6080–90Negative
 10IDC100100Non-amplified
 11IDC10095Non-amplified
 12IDC9595Negative
Table 5

Primer sequences used for RTqPCR

https://doi.org/10.7554/eLife.26857.030
Gene namePrimer sequence
SRC-325FGAGCGGCTCCAGATTGTCAA
SRC-410RCTGGGGATGTAGCCTGTCTGT
E2F1-378FACGCTATGAGACCTCACTGAA
E2F1-626RTCCTGGGTCAACCCCTCAAG
ERCC2-68FGGAAGACAGTATCCCTGTTGGC
ERCC2-169RCAATCTCTGGCACAGTTCTTGA
LIMK1-276FCAAGGGACTGGTTATGGTGGC
LIMK1-367RCCCCGTCACCGATAAAGGTC
MMP15-149FAGGTCCATGCCGAGAACTG
MMP15-305RGTCTCTTCGTCGAGCACACC
DUSP2-491FGGGCTCCTGTCTACGACCA
DUSP2-574RGCAGGTCTGACGAGTGACTG
RCOR2-118FCACTCGCACGACAGCATGAT
RCOR2-285RCATCGCAATGTACTTGTCAAGC
DKK1-95FCCTTGAACTCGGTTCTCAATTCC
DKK1-232RCAATGGTCTGGTACTTATTCCCG
PDGFB-63FCTCGATCCGCTCCTTTGATGA
PDGFB-301RCGTTGGTGCGGTCTATGAG
PGLYRP2-23FTCCTACTCGGATTGCTACTGTG
PGLYRP2-206RAAGTGGTAGAGGCGATTGTGG
ELF5-357FTAGGGAACAAGGAATTTTTCGGG
ELF5-519RGTACACTAACCTTCGGTCAACC
TNFSF10-46FTGCGTGCTGATCGTGATCTTC
TNFSF10-126RGCTCGTTGGTAAAGTACACGTA
STAT1-368FATCAGGCTCAGTCGGGGAATA
STAT1-553RTGGTCTCGTGTTCTCTGTTCT
XAF1-297FGCTCCACGAGTCCTACTGTG
XAF1-403RGTTCACTGCGACAGACATCTC
IFI6-257FGGTCTGCGATCCTGAATGGG
IFI6-401RTCACTATCGAGATACTTGTGGGT
Table 6

Analyses of the amino acids at the flanking sequences of top ER binders whose interactions are blocked by ERX-11 in MCF-7 and ZR-75 cells, as determined by unbiased IP-MS.

https://doi.org/10.7554/eLife.26857.031
Protein/GENE ID# LXXLL motifsLXXLL sequencesSerine at i ± 3/4
 Plectin Q15149-36210 GHNLISLLEVL 220
213 LISLLEVLSGDS 224
421 YRELVLLLLQWM 431
659 LRYLQDLLAWV 669
1102 YQQLLQSLEQG 1112
4006 TGQLLLPLSDA 4016
yes
 FAM83H Q6ZRV22816 AAQLLDTLGRS 826
966 SLRLRQLLSPK 976
yes
 AHNAK Q096660
 CLTC: cQ006105563 TAFLLDALKNN 573
854 RNRLKLLLPWL 864
1001 PNELIELLEKIV 1011
1021 HRNLQNLLILT 1031
1418 PLLLNDLLMVLS 1429
yes
 FAS P493271076 DPQLRLLLEVT 86
418 HATLPRLLRAS 428
560 QIGLIDLLSCM 570
691 APPLLQELKKV 701
1175 QQELPRLLSAA 1185
1211 EDPLLSGLLDSP 1221
1346 GFLLLHTLLRGH 1358
1470 RCVLLSNLSST 1480
2216 QLNLRSLLVNP 2226
2381 NRVLEALLPLKG 2391
yes
 TRG P276351116 VNRLLDSLEPP 126no
 ACTN4 O43707181 GLKLMLLLEVIS 92yes
 TFG Q927340
 Coatomer subunit alpha P53621183 RRCLFTLLGHLDYI 96no
 Q9NVI7-2199 ALSLLHTLVWA 109no
Appendix 1—Table 1

Characterization of the peptides

https://doi.org/10.7554/eLife.26857.054
LXXLL PeptideSequencemolecular mass (MALDI-TOF-MS)
calculatedobserved
SRC1Ac-LTARHKILHRLLQEGSPSD-NH2[M + H]+ for C96H162N32O28: 2212.22212.4
SRC2Ac-DSKGQTKLLQLLTTKSDQM-NH2[M + H]+ for C92H162N26O32: 2176.22176.6
AIB1Ac-ESKGHKKLLQLLTCSSDDR-NH2[M + H]+ for C92H159N29O31: 2199.22199.8
PELP1Ac-SIKTRFEGLCLLSLLVGESPT-NH2[M + H]+ for C103H174N26O31: 2304.32304.6

Download links