Abstract

In embryonic development, cells differentiate through stereotypical sequences of intermediate states to generate particular mature fates. By contrast, driving differentiation by ectopically expressing terminal transcription factors (direct programming) can generate similar fates by alternative routes. How differentiation in direct programming relates to embryonic differentiation is unclear. We applied single-cell RNA sequencing to compare two motor neuron differentiation protocols: a standard protocol approximating the embryonic lineage, and a direct programming method. Both initially undergo similar early neural commitment. Later, the direct programming path diverges into a novel transitional state rather than following the expected embryonic spinal intermediates. The novel state in direct programming has specific and uncharacteristic gene expression. It forms a loop in gene expression space that converges separately onto the same final motor neuron state as the standard path. Despite their different developmental histories, motor neurons from both protocols structurally, functionally, and transcriptionally resemble motor neurons isolated from embryos.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. James Alexander Briggs

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Victor C Li

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    Victor C Li, is co founder of StemCellerant, LLC.
  3. Seungkyu Lee

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Clifford J Woolf

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Allon Klein

    Department of Systems Biology, Harvard Medical School, Boston, United States
    For correspondence
    Allon_Klein@hms.harvard.edu
    Competing interests
    Allon Klein, is co founder of 1CellBio, Inc.
  6. Marc W Kirschner

    Department of Systems Biology, Harvard Medical School, Boston, United States
    For correspondence
    marc@hms.harvard.edu
    Competing interests
    Marc W Kirschner, is co founder of StemCellerant, LLC and 1CellBio, Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6540-6130

Funding

National Institutes of Health (R21 HD087723)

  • Victor C Li
  • Marc W Kirschner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martin Pera, University of Melbourne, Australia

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#16-01-3080R) of Boston Children's Hospital, and (#IS00000137, #1648, #1648a, #1648b) of Harvard Medical School. The Hb9-GFP embryos were collected from a pregnant mouse after euthanasia by inhalation of CO2, and every effort was made to minimize suffering.

Version history

  1. Received: March 17, 2017
  2. Accepted: October 5, 2017
  3. Accepted Manuscript published: October 9, 2017 (version 1)
  4. Version of Record published: October 19, 2017 (version 2)
  5. Version of Record updated: December 21, 2017 (version 3)

Copyright

© 2017, Briggs et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,040
    views
  • 1,168
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James Alexander Briggs
  2. Victor C Li
  3. Seungkyu Lee
  4. Clifford J Woolf
  5. Allon Klein
  6. Marc W Kirschner
(2017)
Mouse embryonic stem cells can differentiate via multiple paths to the same state
eLife 6:e26945.
https://doi.org/10.7554/eLife.26945

Share this article

https://doi.org/10.7554/eLife.26945

Further reading

    1. Stem Cells and Regenerative Medicine
    Sarah Duchamp de Chastaigne, Catherine M Sawai
    Insight

    A new mathematical model can estimate the number of precursor cells that contribute to regenerating blood cells in mice.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.