Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs

  1. Sébastien Houy
  2. Alexander J Groffen
  3. Iwona Ziomkiewicz
  4. Matthijs Verhage
  5. Paulo S Pinheiro
  6. Jakob Balslev Sørensen  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. Vrije Universiteit Amsterdam, Netherlands

Abstract

Doc2B is a cytosolic protein with binding sites for Munc13 and Tctex-1 (dynein light chain), and two C2-domains that bind to phospholipids, Ca2+ and SNAREs. Whether Doc2B functions as a calcium sensor akin to synaptotagmins, or in other calcium-independent or calcium-dependent capacities is debated. We here show by mutation and overexpression that Doc2B plays distinct roles in two sequential priming steps in mouse adrenal chromaffin cells. Mutating Ca2+-coordinating aspartates in the C2A-domain localizes Doc2B permanently at the plasma membrane, and renders an upstream priming step Ca2+-independent, whereas a separate function in downstream priming depends on SNARE-binding, Ca2+-binding to the C2B-domain of Doc2B, interaction with ubMunc13-2 and the presence of synaptotagmin-1. Another function of Doc2B - inhibition of release during sustained calcium elevations - depends on an overlapping protein domain (the MID-domain), but is separate from its Ca2+-dependent priming function. We conclude that Doc2B acts as a vesicle priming protein.

Article and author information

Author details

  1. Sébastien Houy

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  2. Alexander J Groffen

    Department of Functional Genomics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  3. Iwona Ziomkiewicz

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    Iwona Ziomkiewicz, Performed experiments as an employee of University of Copenhagen and is now an employee of AstraZeneca. Has no financial investments in AstraZeneca.
  4. Matthijs Verhage

    Department of Functional Genomics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  5. Paulo S Pinheiro

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  6. Jakob Balslev Sørensen

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    jakobbs@sund.ku.dk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5465-3769

Funding

Lundbeckfonden

  • Jakob Balslev Sørensen

Novo Nordisk Foundation

  • Jakob Balslev Sørensen

Danish Medical Research Council

  • Sébastien Houy

European Research Council (ERC-ADG-322966-DCVfusion)

  • Matthijs Verhage

Danish Medical Research Council

  • Jakob Balslev Sørensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Permission to keep and breed knockout mice for this study was obtained fromThe Danish Animal Experiments Inspectorate (2006/562−43, 2012−15−2935−00001). The animals were maintained in an AAALAC-accredited stable in accordance with institutional guidelines as overseenby the Institutional Animal Care and Use Committee (IACUC).

Copyright

© 2017, Houy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,083
    views
  • 425
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sébastien Houy
  2. Alexander J Groffen
  3. Iwona Ziomkiewicz
  4. Matthijs Verhage
  5. Paulo S Pinheiro
  6. Jakob Balslev Sørensen
(2017)
Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs
eLife 6:e27000.
https://doi.org/10.7554/eLife.27000

Share this article

https://doi.org/10.7554/eLife.27000

Further reading

    1. Neuroscience
    Sharon Inberg, Yael Iosilevskii ... Benjamin Podbilewicz
    Research Article Updated

    Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the Caenorhabditis elegans’ arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals. We found that mechanosensory signals induced by conspecifics and by glass beads affect the dendritic structure of the PVD. Moreover, developmentally isolated animals show a decrease in their ability to respond to harsh touch. The structural and behavioral plasticity following sensory deprivation are functionally independent of each other and are mediated by an array of evolutionarily conserved mechanosensory amiloride-sensitive epithelial sodium channels (degenerins). Calcium imaging of the PVD neurons in a micromechanical device revealed that controlled mechanical stimulation of the body wall produces similar calcium dynamics in both isolated and crowded animals. Our genetic results, supported by optogenetic, behavioral, and pharmacological evidence, suggest an activity-dependent homeostatic mechanism for dendritic structural plasticity, that in parallel controls escape response to noxious mechanosensory stimuli.

    1. Neuroscience
    Magdalena Ziółkowska, Narges Sotoudeh ... Kasia Radwanska
    Research Article

    The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE). Here, we reveal that the RE→dCA1 pathway contributes to the extinction of contextual fear by affecting CFE-induced molecular remodeling of excitatory synapses. Anatomical tracing and chemogenetic manipulation in mice demonstrate that RE neurons form synapses and regulate synaptic transmission in the stratum oriens (SO) and lacunosum-moleculare (SLM) of the dCA1 area, but not in the stratum radiatum (SR). We also observe CFE-specific structural changes of excitatory synapses and expression of the synaptic scaffold protein, PSD-95, in both strata innervated by RE, but not in SR. Interestingly, only the changes in SLM are specific for the dendrites innervated by RE. To further support the role of the RE→dCA1 projection in CFE, we demonstrate that brief chemogenetic inhibition of the RE→dCA1 pathway during a CFE session persistently impairs the formation of CFE memory and CFE-induced changes of PSD-95 levels in SLM. Thus, our data indicate that RE participates in CFE by regulating CFE-induced molecular remodeling of dCA1 synapses.